

FORM VI

MATHEMATICS EXTENSION 1

Examination date

Wednesday 24th May 2006

Time allowed

2 hours

Instructions

All seven questions may be attempted.

All seven questions are of equal value.

All necessary working must be shown.

Marks may not be awarded for careless or badly arranged work.

Approved calculators and templates may be used.

A list of standard integrals is provided at the end of the examination paper.

Collection

Write your candidate number clearly on each booklet.

Hand in the seven questions in a single well-ordered pile.

Hand in a booklet for each question, even if it has not been attempted.

If you use a second booklet for a question, place it inside the first.

Keep the printed examination paper and bring it to your next Mathematics lesson.

Checklist.

SGS booklets: 7 per boy. A total of 1000 booklets should be sufficient.

Candidature: 121 boys.

Examiner

JNC

SGS Half-Yearly 2006 Form VI Mathematics Extension 1 Page 2 QUESTION ONE (14 marks) Use a separate writing booklet. Marks 1 (a) Find the exact value of $\tan^{-1} \frac{-1}{\sqrt{3}}$. (b) Find $\tan^{-1} \frac{1}{2}$ correct to three decimal places. 1 (c) Solve $\sin 2x = -\frac{1}{\sqrt{2}}$, for $0 \le x \le \pi$. 2 2 (d) Solve $e^x = 3$. Give your answer correct to three decimal places. (e) Find $\int \frac{2}{\sqrt{4-x^2}} dx$. 1 (f) The polynomial $P(x) = x^3 + x + a$ has (x - 2) as a factor. Find the value of a. 1 (g) Find primitives of: (i) $\frac{1}{5x}$ 1 (ii) $\frac{1}{3+x^2}$ 2 (h) Differentiate with respect to x: (i) $y = e^{1-2x}$ (ii) $y = xe^x$

SGS Half-Yearly 2006 Form VI Mathematics Extension 1 Page 3 QUESTION_TWO (14 marks) Use a separate writing booklet. Marks (a) Evaluate $\int_{-\pi}^{\frac{\pi}{8}} \sec^2 2x \, dx$. 3 (b) (i) Without using calculus, draw a sketch of the polynomial function 2 $y = x(x-1)(x+2)^2$. (ii) Use your graph to write down the solution of the inequation $x(x-1)(x+2)^2 < 0$. 1 Show that $\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2$. 3 (d) The function f(x) is given by $f(x) = \sin^{-1} x + \cos^{-1} x$, for $0 \le x \le 1$. (i) Evaluate f(0). 1 (ii) Find f'(x). 2 (iii) Evaluate $\int_0^1 f(x) dx$. 2 QUESTION THREE (14 marks) Use a separate writing booklet. Marks (a) Find $\int \frac{x+1}{x^2+4} dx$. 3 (i) Express $2\sin\theta + \sqrt{5}\cos\theta$ in the form $R\sin(\theta + \alpha)$, where R > 0 and α is acute. 3 Give α correct to the nearest degree. (ii) Hence, or otherwise, find the minimum value of the expression $2\sin\theta + \sqrt{5}\cos\theta$. 1 (c) The displacement, x metres, of a particle moving in a straight line is given by $x = 3 - e^{-t}$, where t is the time in seconds. (i) Find the initial displacement and velocity of the particle. 3 (ii) Briefly describe the motion of the particle as $t \to \infty$. 2 On separate diagrams, sketch the displacement-time graph and the velocity-time graph. Clearly indicate the asymptotes on each graph.

QUESTION FOUR (14 marks) Use a separate writing booklet.

Marks

In the diagram above, AB represents a tower of height h metres. The angle of elevation of the tower from a point C due east of it is 15°. From another point D, the bearing of the tower is 061°T and the angle of elevation is 13° . The points C and D are 1000metres apart and on the same level as the base of the tower.

(i) Show that $\angle DBC = 151^{\circ}$.

(ii) Use $\triangle ABC$ to show that $BC = h \tan 75^{\circ}$.

(iii) Find a similar expression for BD.

Calculate the height of the tower, correct to the nearest metre.

- (b) The gradient of a curve is given by $\frac{dy}{dx} = \frac{2}{x+e}$. Find the equation of the curve if 3 y = 1 when x = 0.
- (c) A solid of revolution is formed by rotating about the x-axis the region between the 4 curve $y=2(1+e^{2x})$ and the x-axis, from x=0 to x=1. Show that the volume of the solid formed is $\pi(e^4+4e^2-1)$ cubic units.

SGS Half-Yearly 2006 Form VI Mathematics Extension 1 Page 5	
QUESTION FIVE (14 marks) Use a separate writing booklet.	Mark
(a) Use long division to express $4x^3 - 7x - 8$ in the form $q(x)(x-1) + c$, where c is a constant.	3
(b) (i) Use the remainder theorem to find one factor of $f(x) = x(x+1) - a(a+1)$, where a is a constant.	2
(i) By long division, or otherwise, find the other factor of $f(x)$.	2
(c) Let the roots of the equation $2x^2 + x + 3 = 0$ be α and β .	
(i) Find $\alpha + \beta$ and $\alpha\beta$.	2
(ii) Find $(\alpha-1)(\beta-1)$.	2
(iii) Find a quadratic equation whose roots are α^2 and β^2 .	3
QUESTION SIX (14 marks) Use a separate writing booklet.	Marks
(a) A particle is moving in a straight line. At the time t seconds, its velocity is v metres	2
per second and its displacement from the origin is x metres. Prove that $\ddot{x} = \frac{d}{dx}(\frac{1}{2}v^2)$.	
The acceleration of a particle is given by $\ddot{x} = \frac{3}{2}(1-x^2)$. Initially the particle is at the origin and moving with a velocity of 6 metres per second.	
(i) Show that the velocity of the particle is given by $v^2 = 36 + 3x - x^3$.	2
(ii) Explain why the particle will never reach the position $x = 4$.	$\boxed{2}$
A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin satisfies the equation $\ddot{x} = -4x$, where the time t is in seconds.	
(i) Show that $x = a\cos(2t + \beta)$ is a possible equation of the motion, where a and β are constants.	2
(ii) Initially the particle has a velocity of 2 m/s and a displacement from the origin of 4 metres.	
(α) Find the period of oscillation.	1
(B) Show that the amplitude of oscillation is $\sqrt{17}$ metres.	3
Determine the maximum speed of the particle.	1
Where does the particle first come to rest?	

QUESTION SEVEN (14 marks) Use a separate writing booklet.

Marks

- (a) (i) A particle is projected from the origin with velocity V at an angle of projection θ . The equations of displacement are $x = Vt\cos\theta$ and $y = -\frac{gt^2}{2} + Vt\sin\theta$.
 - (α) Show that the time of flight T is given by $T = \frac{2V \sin \theta}{g}$.
 - (β) Hence, or otherwise, show that the range R on the horizontal plane through the point of projection is $R = \frac{V^2 \sin 2\theta}{q}$.

In the diagram above, two particles are projected from the origin with the same velocity V at different angles of projection θ_1 and θ_2 . They strike the same point A, on the horizontal plane through the point of projection, at times T_1 and T_2 respectively.

(a) Show that $\theta_1 + \theta_2 = \frac{\pi}{2}$.

2

 (β) Show that the distance from O to A is $\frac{1}{2}gT_1T_2$.

3

- (b) A particle is moving in simple harmonic motion about the origin. It starts at x = 1 and at t = 1 it is at x = 5 for the first time. The particle next returns to the position x = 5 at t = 2.
 - (i) Let $x = a\cos(nt + \alpha)$, and show that $\cos n = \frac{3}{5}$.

3

(ii) Find the amplitude of the motion.

2

END OF EXAMINATION


```
a) (i) LDBC = 61+90 (alternate 1 = on | lines and C is due east
\frac{BC}{100} = \frac{1}{100}
                             1. (both necessary)
      :. Bc = htan 75
           BD = h tan 77
     UV) In A BDC:
      h^{2} \left( \tan^{2} 75 + \tan^{2} 77 - 2 \tan 75 \tan 77 \cos 151 \right) = 1000
          \frac{h}{\sqrt{\tan^2 75 + \tan^2 77 - 2 \tan 75 \tan 77 \cos 15}}
         h = 128 m / (penalise incorrect rounding)
          y = 2 ln (x+1) + c
       Substituting x=0, y=
      1 = 2 lne +c/
 1 = 2 ln (x+e) -1
      c) V = \overline{u} \left( 2 \left( 1 + e^{2x} \right) \right) dx
   =4\pi \int_{-1}^{1} +2e + e dx
      =4T [x+e+e]
          = 47 (1+2+e+) - (1+4) | Must show
                                               substitution)
            = T(e+ 4e2-1)
```


) (a) cis is = dw (b) (i) $\frac{d}{d} \left(\frac{1}{2} \sqrt{1} \right) = \frac{3}{2} \left(1 - x^{2} \right)$ $\frac{1}{2}N^{\frac{3}{2}} = \frac{3}{2}\left(x - \frac{x}{3}\right) + C$ $\frac{1}{2} \sqrt{x} = \frac{3}{2} \left(x - \frac{x^3}{3} \right) + 18$ $v^2 = 36 + 3x - x^3$ (ii) At x = 4, $x^2 = 36 + 12 - 64$ So the particle does not reach x = 4.

 $\dot{x} = -2a\sin(2t+\beta)$ $\dot{x} = -4a\cos(2t+\beta)$ $(ii)(d) T = 2\pi$ (B) When t=0; x=4 and x=2: 2 = -2asin B Squaring and adding gives 16+1 = a (cos p + sim B) So the amplitude is 117 m since particle oscillates / about the origin. (8) Maximum sprend will occur when $\sin(2t+\beta)=\pm1$. $\dot{x} = \pm 2\sqrt{\eta}$ So maximum speed is 2517 m/s. (b) Since $a = \sqrt{17}$ and the particle oscillates about the origin and moves in a positive direction from x = 4, it first comes to set at $x = \sqrt{17} \text{ m}$.

QUESTION SCVEN
a) (i) (x) $x = Vt \cos \theta$ $y = -gt$, $Vt \sin \theta$
Time of flight occurs when y =0.
7 - gt VLSMO - V
$t \left(V \sin \theta - gt \right) = 0$
$t=0$ or $V \le m\theta - gt = 0$
$t = \frac{2V \sin \theta}{g}$
Since t = 0 is initial time the time of flight
Since t = 0 is initial time, the time of flight is T = 2V sin 0
(B) R = Vt ws0
B= Vt @s0
$= V. \left(\frac{2 \text{V} \sin \theta}{6} \right) \cos \theta$
, <i>d</i>
= V sin 20
$(ii)(x)OA = V^{2}SMD_{1} = V^{3}SMD_{2}$
$20 \sin 2\theta_1 = \sin 2\theta_2$
Tr.
$\triangle \circ 2\Theta = 2\Theta_1 + 2\pi T \text{or} 2\Theta_1 = TC - 2\Theta_2$
$\frac{\partial_1 = \Theta_2}{\partial_1 + \Theta_2} = \frac{2(\Theta_1 + \Theta_2)}{\Theta_1 + \Theta_2} = \frac{7L}{2}$
F V
Since $\theta_1 \neq \theta_2$, $\theta_1 + \theta_2 = \frac{11}{2}$ only.
· · · · · · · · · · · · · · · · · · ·
· ·

	b) in $t = 0$, $x = 1 \Rightarrow a \cos \alpha = 1$
The street annual total and public a gampa region of	t=1, $t=5$ a cos $(n+d)=5$
er e en lande en en hall derne en	$t = 2 \times = 5$ a cos(2n+d) = 5
	From Q: a = 1 (1)
**************************************	Substituting tinto (D and expanding gives:
*	$\frac{\cos \eta \cos d - \sin \eta \sin \alpha}{\cos \alpha} = 5$
to the second real participation of the second real participation	(e) cosn - sinn tand =5
\$	Substituting @ into 13 gives:
	Cos $2n - \sin 2n \tan \alpha = 5$ From © $\tan \alpha = \frac{\cos n - 5}{\sin n}$, substituting into (6),
_ D D	$\cos 2n - \sin 2n \cdot \left(\cos n - 5\right) = 5$
an arming man a select	$2\cos^2 n - 1 - 2\sin n \cos n \left(\cos n - 5\right) = 5$
	$\frac{3 \ln n}{2 \cos n - 1 - 2 \cos^2 n + 10 \cos n} = 5$
at make some popular popular	COS N = 3
:	(ii) Substituting cosn = 3 into O gives;
	tand = - 12
	Since tand is negative, dis in quadrants 2 or 4 and cosd = +02 From equation (1) and since
	assolutude to positive
٠	$a = 5\sqrt{5}$