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QUESTION ONE (12 marks) Use a separate writing booklet. Marks

(=]

(a) Write down the exact value of cos -‘%’-.

[=]

1
(b) Write down a primitive of 3
z

{c) Sketch the graph of y = tan™! z.
(d) Write down the derivative of cos3z.

(e) Express 570° in radians in terms of 7.

o] 8] =] [=]

(f) Sketch the graph of y = sin 2z, for 0 < z < 2x.

(%]

1
(g) Find the exact value of / e** du.
o

(3]

. : .1
(h) Differentiate sin* £.

QUESTION TWO (12 marks) Use a separate writing booklet. Marks
(a) Differentiate zlnz.
(b) Solve 2cos8++/3=0, for 0 < 6 < 2.

(¢} Find the exact area of the sector which subtends an angle of 40° at the centre of a
circle of radius 5 centimetres.

(d) Find the equation of the tangent to the curve y = tan 2z at the point where z = 3

1
2
(e) Find the exact value of /0 é_x_%l——l dx.

Exam continues next page ...
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QUESTION THREE (12 marks) Use a separate writing booklet.

(2) Express sin20 in terms of ¢, where t = tan 4.

(]

2
(b) Find / ngdz.

(¢) (i) Express z° in radians in terms of 7.

(o] [=]

(ii) Find the derivative of sinz°.

(d) Find the exact value of:
(3) sin? (-2

(ii) cos (tan™* (~2))

(e) (i) Differentiate y = e

o] [=] [S] (]

1
(i1) Hence find the exact value of / ze™® da.
0

QUESTION FOUR (12 marks) Use a separate writing booklet. Marks
(a) Find a general solution to the equation cos2z = sinz.
(b) (i) Express 4cosz + 3sinz + 5 in simplest form in terms of ¢, where ¢ = tan £.

(ii) Hence, or otherwise, solve 4cosz + 3sinz + 5 = 0, for 0 < z < 360°. Give your
answer correct to the nearest minute.

1-—- 26
(¢) Show that ”i+—z2§_2§ =tanf, for 0 <8 < g

(d) Consider the function f(z) =1+ x——%’ for z > 2.

Find the inverse function.

Exam continues overleaf ...
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QUESTION FIVE (12 marks) Use a separate writing booklet. Marks 4 Vi
by }L Inx 4 cC v = 1.

is, the value of the car decreases according to the equation V = Ae™™, where £ is the -
time in years and A and k are constants. The purchase price of a car was $70000 and C\ —_——— = — =

after 2 years its value dropped to $50 000.

{a) The value, $V, of a car decreases at a rate which is proportional to its value. That
e

(i) Show that % =—kV.

[eo] [=]

(ii) How long will it take for the value of the car to drop below $30000. Give your
answer correct to the nearest month.

(b) (i) Determiné the domain and range of y = 2sin™'(z — 1).

d) d ((_053?() =-~3sm 3x /
dr.

(i) Sketch the graph of y = 2sin™(z — 1).
(iii) Make = the subject of the equation y = 2sin™"(z — 1).

11

[eo] [=] [ [¥]

iv) Find the exact area bounded by the curve y = 2sin~!(z — 1), the line z = 2 and 2 —
) the z-axis. v v . ( ) e\ 570 570x b \/
I¥o

—'—%‘I vadwns \/

n

QUESTIQN SIX (12 marks) Use a separate writing booklet. Marks
. 2 (1 i d
(a) The function f(z) = z°In =) for z > 0, has first derivative —3z(1 + 2Inz) and {)
[ |-

vV

second derivative —3(3 + 2Inz).

(i) Find the exact value of = at which the function has its only stationary point.

(ii) Determine the nature of the stationary point.

VAN
% X
v T 1
(ili) Find the exact value of z at which the function has a point of inflection.

(iv) Given that lim f(z) = lim f'(z) = 0% sketch the graph of y = f(z) for the { 27 ~ 2%
£—0+ z—0t /
3) e o = [ 2 ]
o o

o] [o] [ee] [=]
!

domain 0 <z < 1.

(b) (i) Show that 8cos®z = 3+ 4 cos 2z + cos4z.

(ii) Find the volume of the solid generated by rotating the area enclosed between

[eo] D]

y=cosz and y =cos’z, for 0 < z < g, about the z-axis. l\.} Ol S_;V‘

END OF EXAMINATION . 5
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