SYDNEY GRAMMAR SCHOOL



2009 Assessment Examination

## FORM VI MATHEMATICS 2 UNIT

Thursday 28th May 2009

## General Instructions

- Writing time 40 minutes
- Write using black or blue pen.
- Board-approved calculators may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question on a new leaflet.

## Structure of the paper

- Total marks 42
- All three questions may be attempted.
- All three questions are of equal value.

## Collection

- Write your name, class and master clearly on each leaflet.
- Hand in the three questions in a single well-ordered pile.
- Hand in a leaflet for each question, even if it has not been attempted.
- If you use a second leaflet for a question, place it inside the first.
- The question papers will be collected separately.

6F: SJE

6G: FMW

6H: BDD 6S: RCF

6P: KWM

6Q: JMR

6R: LYL

Ĺ

• Writing leaflets: 3 per boy.

Checklist

• Candidature — 101 boys

Examiner

KWM

SGS Assessment 2009 ...... Form VI Mathematics 2 Unit ...... Page 2

QUESTION ONE (14 marks) Use a separate writing booklet.

Marks

(a) Express  $40^{\circ}$  in radians. Leave your answer in terms of  $\pi$ .

1

(b) Solve 
$$\sin x = -\frac{\sqrt{3}}{2}$$
, for  $0 \le x \le 2\pi$ .

2

(c) Differentiate the following:

2

- (i)  $y = 3\sin 2x$
- (ii)  $y = \sin^2 x$
- (d) The position x metres at time t seconds of a particle moving in a straight line is given by

$$x = t^2 - 8t + 12$$
, where  $t \ge 0$ .

(i) Write down the initial position of the particle.

1

(ii) At what time does the particle first pass through the origin?

1

(iii) Differentiate to find the velocity v as a function of time t.

2

(iv) When is the particle stationary, and where is it at this time?(v) Find the distance the particle travels in the first 3 seconds.

2

(e) Evaluate the definite integral

$$\int_0^{\frac{\pi}{2}} \sec^2 \frac{x}{2} \, dx.$$

網貨

QUESTION TWO (14 marks) Use a separate writing booklet.

Marks

(a)



A circle has radius 6 cm. An arc AB of length 10 cm subtends an angle  $\theta$  at the centre of the circle.

(i) Find the exact size of angle  $\theta$  in radians.

1

(ii) Calculate the area of the shaded sector AOB.

1

- (b) Consider the wave function  $y = 4\sin\frac{x}{3}$ .
  - (i) Write down the amplitude of the wave.

(ii) Find the period of the wave.

1

(c) Find  $\frac{dy}{dx}$  for each function:

(i)  $y = e^{\cos x}$ 

1

(ii)  $y = \ln(\sin x)$ 

1

(d) Find the gradient of the tangent to the curve  $y = \tan x$  at  $x = \frac{\pi}{2}$ .

2

- (e) A ball is projected upwards with a velocity of 25 m/s from a fixed point situated 30 m above the ground. Using the ground as the origin, take  $g = 10 \,\mathrm{m/s^2}$  and upwards as positive, so that the acceleration function is a = -10.
  - (i) Find the velocity function v and the displacement function x, in terms of time t.
  - (ii) Find the time taken for the ball to reach its highest point.
  - (iii) At what speed will the ball strike the ground?

SGS Assessment 2009 . . . . Form VI Mathematics 2 Unit . . . . Page 4

QUESTION THREE (14 marks) Use a separate writing booklet.

Marks

3

(a) Calculate the exact area enclosed by the hyperbola  $y = \frac{2}{x+1}$ , the x-axis and the lines x = 1 and x = 3.

(b)



The diagram above shows the curves  $y = 2\cos x$  and  $y = -2\sin\frac{x}{2}$  sketched for  $0 \le x \le \pi$ . Find the shaded area.

(c) Consider the function  $y = 2x - 3 \ln x$ .

(i) Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$ .

2

2

(ii) Hence show that the curve  $y = 2x - 3 \ln x$  has a minimum turning point at  $x = \frac{3}{2}$ 

(d) The velocity of a particle moving in a straight line is given by

3

$$v = 1 + \frac{8}{2t+1}.$$

Show that the distance travelled by the particle in the first 4 seconds is  $4 + 8 \log_e 3$ .

(e)



A particle moves along a straight line. The graph above shows the distance x of the particle from a fixed point (the origin) at time t. Sketch the graph of the velocity vas a function of time for  $0 \le t \le 12$ .

| FORM I MITHEMATICS                                                            | MAY ASSESSMENT 2009                                       |                                           |
|-------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| OVESTION /                                                                    | $(iv)$ $\dot{x} = 0$                                      | OVE                                       |
| $8) 	 180^\circ = \pi$                                                        | 24-8=0                                                    | a) (i)                                    |
| $46^{\circ} = T \times 40$                                                    | 2t = 8                                                    | <del>-</del>                              |
| /80                                                                           | t = 45/                                                   |                                           |
| $40^{\circ} = 2\pi$ radians /                                                 |                                                           |                                           |
| 7                                                                             | x = 16 - 32 + 12                                          | _(ii)                                     |
| b) $\sin x = -\frac{\sqrt{3}}{2}$                                             | $\chi = -4$                                               |                                           |
| 2 1/1                                                                         | The particle is stationary                                | F1.0000 At 1 AVE-10.1                     |
| $\lambda = \pi + \pi$ or $\lambda = 2\pi - \pi$                               | after 4s, it is 4 units                                   |                                           |
|                                                                               | left of the origin.                                       | and an other case to the measurement of   |
| $x = 4\pi / \text{ or } n = 5\pi / 3$                                         | 0                                                         | b) (                                      |
| 3 3                                                                           | ( <del>I</del> )                                          | (                                         |
| ن رغ                                                                          | ± 0 1 2 3                                                 | (i) 6                                     |
| $\frac{(1)}{y^{1}-3\sin 2\pi}$ $\frac{y^{1}-6\cos 2\pi}{2}$                   | 2 12 5 0 -3                                               | -(ii)                                     |
| y1- 6 cos2n/                                                                  | The particle travels 15m in                               | +1-7                                      |
|                                                                               | . He first 3 seconds. V                                   |                                           |
| $ \begin{array}{ccc} (ii) & y = \sin^2 x \\ y' = 2\sin x \cos x \end{array} $ |                                                           |                                           |
| y' = 2 sinn 652 /                                                             | (e) I                                                     |                                           |
|                                                                               | (e) $\frac{\pi}{2}$ $\int \frac{\sec^2 x}{2} dx$          | ن کار چین کارند این از کید کارند          |
| $(d)  \varkappa = \ t^2 - 8t + 12$                                            | J : 7                                                     | (i)                                       |
|                                                                               | $= \begin{bmatrix} 2 + \alpha_0 & 2 \\ 2 \end{bmatrix}_0$ |                                           |
| (i) initial position $(t=0)$<br>n=12.                                         |                                                           |                                           |
| $\chi = 12$ .                                                                 |                                                           | ( <u>ii)</u>                              |
| 12 units to the right of                                                      | = 2 ( tan = - tano)                                       |                                           |
| the origin.                                                                   |                                                           |                                           |
|                                                                               | = 2 \( \sigma \)                                          |                                           |
| (ii) put n=0                                                                  |                                                           |                                           |
| $t^2 - 8t + 12 = 0$                                                           |                                                           | (d)                                       |
| (t-6)(t-2)=0                                                                  | (14)                                                      |                                           |
| t=2 or $t=6$                                                                  |                                                           |                                           |
| The particle prot passes                                                      |                                                           | at                                        |
| through the origin at                                                         |                                                           | •                                         |
| $\underline{t} = 2s. V$                                                       |                                                           |                                           |
| (m = 24 0 /                                                                   |                                                           | Market 100 and 4 and 6 and                |
| $(iii)  \vec{n} = 2t - 8 \checkmark$                                          |                                                           |                                           |
|                                                                               |                                                           | recommendate for a comment of the comment |
|                                                                               |                                                           |                                           |
|                                                                               |                                                           |                                           |

| OVESTION 2                                           | (e) $\ddot{n} = -10$                              |
|------------------------------------------------------|---------------------------------------------------|
| a) (i) $ro = -1$                                     |                                                   |
| 60 = 10                                              | $\lambda = -10t + C_1$                            |
| $\theta = 5$ radians $\sqrt{3}$                      | . when t=0, n = 25                                |
| 3                                                    | $\vec{x} = -10t + 25$                             |
| $(ii) \qquad A = \frac{1}{2} \Lambda^{\perp} \theta$ | $x = -5t^2 + 25t + c_L$                           |
| Scator 2                                             | . Wen t=0 2=30                                    |
| $= 1 \times 36 \times 5$                             | n= -5t + 25t + 30V                                |
| = 20 cm <sup>+3</sup> /                              |                                                   |
|                                                      | (ii) lighter point $\dot{n} = 0$<br>-10t + 15 = 0 |
| b) $y = 456 \times 3$                                | -10 t + 25 = 0                                    |
| 3                                                    | 10t = 25                                          |
| (i) amplitude = 4 /                                  | t=2hs.                                            |
| (ii) period $T = \frac{2\pi}{n}$                     |                                                   |
| 7                                                    | (ii) put n=0.                                     |
| $T = 2\pi$                                           | $-5t^2 + 25t + 30 = 0$                            |
|                                                      | £2-5t-6=0                                         |
| T = 6 TV                                             | (t + 1)(t - 6) = 0                                |
|                                                      | buts the ground at t=65                           |
| (i) $y = e^{65\pi}$ $dy = -8inxe^{65\pi}$            | $\dot{n} = -10t + 25$                             |
| dy = - sinxe                                         | $\vec{x} = -60 + 25$                              |
| dn                                                   | $\dot{n} = -35 \text{ m/s.} \checkmark$           |
| (ii) y = -ln (sinn)                                  |                                                   |
| ds = . Cosn V                                        | The pall hits the ground                          |
| $\frac{ds}{dn} = \frac{\cos n}{\sin n}$              | The pall hits the ground ;                        |
| = 60tn                                               |                                                   |
|                                                      |                                                   |
| (d) y= tann                                          | (14)                                              |
| (d) y = Lann<br>ds = see n/                          |                                                   |
| dn                                                   |                                                   |
| at n = t                                             |                                                   |
|                                                      |                                                   |
| gradient = See T                                     |                                                   |
| = 4, 3/                                              |                                                   |
|                                                      |                                                   |
|                                                      |                                                   |
|                                                      |                                                   |
|                                                      |                                                   |

|                                                                                                                                                  | 1                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| OVESTION 3                                                                                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                         |
| $A = \int \frac{2}{x+1} dx$                                                                                                                      | dn' x 9                                                                                       |
| $A = \int 2 dx$                                                                                                                                  | at $n=3$ $=4$                                                                                 |
| y x+1                                                                                                                                            | 3                                                                                             |
| 1 1 1 1 3                                                                                                                                        | d <sup>2</sup> g >0, a mínimum.                                                               |
| $A = \int 2 \ln (n+1) $                                                                                                                          | dar                                                                                           |
|                                                                                                                                                  | (d)  v = 1 + 8 $2t + 1$                                                                       |
| = 2 ln 4 - 2 ln 2<br>= ln 4 sq yri+s.                                                                                                            | 2£+1                                                                                          |
|                                                                                                                                                  | distance - \int 1 + 8 dt  travelled \int 2t+1                                                 |
|                                                                                                                                                  | docathed 2++1                                                                                 |
| n e                                                                                                                                              | 7,44,2044                                                                                     |
| $A = \int 2\cos x + 2\sin x  dx$                                                                                                                 | $= [ + + 4 \ln (2 + 1) ]$                                                                     |
| $A = \int_{0}^{\infty} 2\cos x + 2\sin x  dx$                                                                                                    | $= \int_{-\infty}^{\infty} t + 4 \ln(2t+1)$                                                   |
| O ————————————————————————————————————                                                                                                           | = (4 + 4 - 0.9) - (0)                                                                         |
| = 281nx - 4 cosx 1/                                                                                                                              |                                                                                               |
|                                                                                                                                                  | = 4+ 4ln32                                                                                    |
|                                                                                                                                                  | = 4+ 8 ln 3V                                                                                  |
| $=$ $\begin{pmatrix} 0 \end{pmatrix} - \begin{pmatrix} -4 \end{pmatrix}$                                                                         | $= (4 + 4 \ln 9) - (0)^{\circ}$ $= 4 + 4 \ln 3^{\circ}$ $= 4 + 8 \ln 3^{\circ}$ (as repuired) |
|                                                                                                                                                  |                                                                                               |
| = 4 sq vnits.                                                                                                                                    | (e) 1v                                                                                        |
| $1 \qquad 10 \qquad 2 \times 2 \qquad 3 \qquad 10 \qquad 2 \qquad 3 \qquad 10 \qquad 3 \qquad 10 \qquad 3 \qquad 10 \qquad 10 \qquad 10 \qquad $ |                                                                                               |
| $y = 2n - 3 \ln n$                                                                                                                               | 7 10 12                                                                                       |
| (i) $dy = 2 - 3$                                                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                       |
| $\frac{dy}{dn} = 2 - 3\sqrt{2}$                                                                                                                  | 4 7 /10 12                                                                                    |
|                                                                                                                                                  |                                                                                               |
| $\frac{d^2y}{dn^2} = \frac{3}{n^2}$                                                                                                              |                                                                                               |
|                                                                                                                                                  | 4                                                                                             |
| ii) $dy = 0: 2-3=0$                                                                                                                              |                                                                                               |
| dn n                                                                                                                                             |                                                                                               |
| 22-3=                                                                                                                                            |                                                                                               |
| 2n = 3                                                                                                                                           |                                                                                               |
| n = 3                                                                                                                                            |                                                                                               |
|                                                                                                                                                  |                                                                                               |
| Stationary point at $n=3\sqrt{2}$                                                                                                                |                                                                                               |
|                                                                                                                                                  |                                                                                               |
|                                                                                                                                                  |                                                                                               |

.