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QUESTION ONE (16 marks) Start a new page.

2010 Annual Examination {a) Find the gradient of the straight line 5y = 2z + 20.

i
(b) Use your calculator to find the value of /234 + 877 x 23.3 correct to three decimal

FORMIV R T—
- MATHEMATICS | IO

(ii) (2z 4+ 3)(z —3)
Monday 1st Novermber 2010

(d) Find 32% of 225.
{e) HW(z) =1+ 32% ind W(2).

(f) If two twenty-cent coins are tossed what is the probability that both coins will land

. tails up?
General Instructions Collection
* Wiiting time — 2 hours . » Write your name, class and master ’ {g) Simplify as a single logarithm to base 5 the expression log; = — logs v/ .
e Wiite using black or blue pen. clearly on each page of your answers. ' )
» Board-approved calculators may be used. * Sta'p l.e your answers In. a SmgleAbun'dle. (h) How much interest would you earn if you invested $7000 at 8%p.a. simple interest
o All necessary working should be shown ¢ Write your name and master on this for four years? Give your answer correct to the nearest dollar.
in every question. . question paper and submit it with
¢ Start each question on a new page. your. a.nswers.( o ) - ‘ (i) Simplify ( s4t3)5.
Structure of the paper ’ 1 . ’ ) )
o Tét‘lalhgarks — 112 _ (J) Solve (z —4)" =0.
e All'seven questions may be att'émpted. : ) . W
. : : 19
s All seven questions are of equal yalue. ) :

LA MW 4B: BR 4C: TYT, -

oo, 4D SO
4E: REP 4F: MK 4G: BDD 4H: DS
41: . JMR 4J: MLS : .
paper 1'equir<; 4 » : r Fxaminer In the diagram above find an expression for cos@.

REP . S . 7 . .
o (1) Rewrite the equation 37 = 2187 in logarithmic form.

Exam continues next page ...
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QUESTION ONE  (Continued)
(m)

107°

Find the size of the angle marked =z, giving a suitable geometric reason.

(n) Where does the parabola y = (z + 1)(z — 3) cut the y-axis?

Exam continues overleaf ...
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QUESTION TWO (16 marks) Start a new page.

(a) Consider the circle 2% + y* = 144.
(i) What point on the number plane is the centre of the circle?

(i) Write down the radius of the circle.

(b) Solve:
(i) Bz—58)z+7)=0
(i) 2% — 3z —10=0
(i) (z—3)* =16
(c) Solve the following pair of equations simultaneously.
y=1+2z "
y=11—3z

(d)

8

Find the area of the triangle above. Give your answer correct to two decimal places.

(e) How much would you expect to pay in interest if you borrowed $30000 at 8% per
annum compounded annually for 10 years? Give your answer correct to the nearest
dollar.

(f) By completing the square express £ — 8z + 19 in the form (z — )? + 3, where o and
[ are positive integers.

Exam continues next page ...
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QUESTION THREE (16 marks) Start a new page.

(a) Express ﬁﬁ

in its simplest form with a rational denominator.

1
(b) Solve cosz = 7 for 0° < z < 360°.

%

(©

(d)

(e)

(f)

(8)

(h)

C

In the diagram above AADB is similar to AABC with AB = 2:5 cm, DB = 2cm
and CB = 5cm.

(i) Find the length of AD.
(ii) Find the ratio of the area of AADB to the area of AABC .

Use the remainder theorem o find the remainder when z% — 7z% 4 5 is divided by
z—1.

Use the quadratic formula to solve £* = 2(3z + 1) . Express your answer in simplest
exact form. )

Find the value of # correct to the nearest degree.

Find the volume of a pyramid with a square base of side 5 cm and perpendicular height
6 cm.

Solve by completing the square
z? +6z—1=0.

Give your answers correct to three decimal places.

Exam continues overleaf ...
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QUESTION FOUR (16 maﬂ{S) Start a new page.

() Find z given that v/18 +v8= V.

(b)

Find z correct to three decimal places.

(c) (i) Draw a neat sketch of the graph of y =sin§ for d° < 6 < 360°.

(i) Hence, or otherwise, solve sinf = —1 for 0° < 8 < 360°. .

(@)

B

The chord AB and the diameter CD of a circle, centre O, intersect at X .
CX =X0, CD =8cm and AX = 3cm.
Find, stating all reasons, the length of X B .

(¢) Find pif (z — 2) is a factor ofmé+px2+z+6,

Exam continues next page ...




)

In the diqgram PU is a tangent touching the circle at 7'. T'S is parallel to PR.
In each of the following three parts all necessary geometric reasons must be given.

(i) Prove that /STR = 51°.
(i) Find /TQS.
(iii) Find £STU.

BExam continues overleaf . ..
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QUESTION FIVE (16 marks) Start a new page.

(2) Use long division to find the polynomial Q(z) if
7+ 2% —z 42 4
o1 ey

{(b) Consider the curve y = 3% — 2.

(i) Find where the graph of the curve cuts the y-axis.
(i

} Find where the graph of the curve cuts the z-axis correct to one decimal place.
(it} Pind the equatibn of the horizontal asymptote. . '
)

{iv) Sketch the curve clearly showing all points of intersection with the axes.

' 6
(¢) (i) Copy and complete this table of values for the curve y = ——.
z

& —6 -3 —2 ~1 1 2 3 6

Y

: . 6
(ii) Using the values in the table, sketch the graph of y = ——, clearly labelling the
asymptotes.

(d) Tf the remainder when z° — 13z - 14 is divided by z — a is 2.
(i) Show that a® —13a+12=0.

(it) Hence find -all possible values of a.

QUESTION SIX (16 marks) Start a new page.
(a)

Q

In the diagram above TP is a tangent, TP = 6 cm, TR = 4cm and RQ = zcm. Find
the value of z giving a suitable geometric reason. ’

Exam continues next page ...
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QUESTION SIX (Continued)

(b) Sketch the graph of the polynomial y = (z + 1)*(z — 2). Clearly indicate the pbints
where the graph intersects the axes.

{¢) P(z) and Q(z) are polynomials. The degree of P(z) is n and the degree of Q(a:) ism
where n. > m.
(i) What is the degree of P(z) 4 Q(z)?
(ii) What is the degree of P(z) x Q(z)7

(d) ‘
’ y:$2—2m~3 Y

P(4,5)

N

N

The tangent to the parabola y = 2% — 22 — 3 at the point P (4,5) has a gradient of 6.
The line through P perpendicular to the tangent cuts the parabola at Q.

(i) What is the gradient of the line PQ?
(1) Show that the line P has equation z 4 6y — 34 =0.
(iif) By solving simultaneously, find the coordinates of (.
{e) In eight hours Jake walks twelve kilometres more than Fiona does in seven hours; and
in thirteen hours Fiona walks seven kilometres more than Jake does in nine hours. If
Jake walks at zkilometres per hour and Fiona walks at y kilometres per hour, form

a pair of simultaneous equations and solve them to find how fast each of Jake and
Fiona walk.

(f) If } log,(abc) — L log, (bv/c) — +log, ¢ = 0, prove that a? = b*c®. -

QUESTION SEVEN (16 marks) Start a new page.

{a) The Mighty Mango, star of the rugby XV is having injury problems. When he is
playing the probability that his team will win is % , but otherwise it is only % . The
probability that he will be fit for the next match is % . Find the probability that his

team will win the match.

Exam continues overleaf ...
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QUESTION SEVEN (Continued)

(b

In the diagram above O is the centre of the circle and BD is a tangent; AB =y and
LDAB =qa.

(1) Prove that AC =ycosa.

; | sino
(i) By using thé trigonometric identies sin ¢ + cos’ @ = 1 and tana = P, prove

that CD =ysinatana.

(c) . (i) Express tan(180° — <) in terms of tang .
(ii) Suppose 4, B, C are the angles of a triangle and tan A = 1 and tan B = 2.

tanz 4 tany

to prove that tan C = 3.
1 —tanztany

{e) Use the formula tan(z +y) =

(8) I a b, ¢ are the corresponding sides of the friangle, prove that
b ¢

a
V5 2y/2 3’
- N
W(d) (i) Expand <y - ~> .
v/
S 1 | '
(w) <y - —> =3 and y — = > 0, without finding the value of y find the value of:
Y ) .

1
() y —&3
(8) y"+yl—4L

END OF EXAMINATION
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2010 Form IV Annual Examination: Solutions 15t November '
. : ‘ {ution , N AN VT4 1

@ (e) a? = 2(3z - 1)

3. (a) == X
16 marks per question ’ V-1 »\7/;7_?/»]7 \/74‘ ! Soa? ~ o —2=0
= : 6++/36-8 .
. Do not penalise omission of units 6 .SO = 2 E/J
2 , , - -} .
L (a) 2 () T =7000x 008 % 4 | (b)  cosp = So 7= @:2\/471

V2

() 143764 V] , So.I=$2240 o _ So @ =180° £ 45° So s=34VI1 - |Y|
; . 2 (l) 3201;15 \/ g . .: o o ' .
© () *—36 [j o x=135° or 225 O st 162 4 197 — 342 QI

(i) 20 — 300 () o4 ) () A4DB || AABC 2xi6x10 L
: (Corr. sides proportional) So 6 =152° (nearesl ") E
@72 |V k) cosf =< - g
e) W({2) =25 : - 25 5 _ 3
(e) W(2) ] | (1) logs2187 =7 [/] | So AD—1em  [7] v So V =50cm
(f) i \/ o 7 v . . . 2 4 Gy —1 =
Lt i (n) z =73 @ (Opp. s cyclic ’ (1) Ratio of lengthsis 2: 5 (b) mz +bz— =0
{g) logs g quad. supplementary) , So ratio of areas is 4 : 25 [Zl S0 @7+ 6wt 0 =10
. So . (z+3)%=10
(11) —3 or (O: _3) E _ (d) R=1%~ 7x1? + 5 9o 43 = :(:\/_16
: So R=~1 S0 o =—3+10
i 3 e — 1 TR0 . )
2. (a) (i) Centreis (0,0) (d) A=3%x6x8xsinll3 II/:’ Yo @ = 0162 or — 6-162
(i) Radius = 12 So A = 22-09 units*(2 d.p.)
) =25 or — C Amt. owed =3 14008  [] : ‘ :
®) @) z=F%or-7 ‘ (e) Amt. owe 30000(1 +0 (1);3) » @ 4 @) VIB+VE= /5 (d) CX = 2 (radii & X bisects CO )
()  a?—3z-10=0 - = 30000 x 1.08 o S 3VI4ni=vE  [V] Similarly, XD = 6
50 (2 - 5)(s+2) = 0 i - 80 5v3 VB3 - v& | Mo AX KB = O
So z==20rb IZJ . Sointerest = $34768(nearest §) v So z = 50 . ’
= So3XB=2x6
s 3)% =1 f) 2® -8z 419 : ' So XB =4
() (=3 =10 ' O e 2m+ : (b) 2® = 4* + 5% =2 x4 X b x cos 30° ¢ Shem
So  w—3=:kd @ =a" -8 +164+3 @ So 2 ~ B-35898 (e) = — 2 is a factor, so ,
s . (i — 42 ' : 3 92 L9 LB — )
S(,) v=3kd (@ ) 43 : So @ = 2-522 units (3 d.P-) z>0 ZAExa el
86 g=Tor —1 _ ' _ So 8:Adp+8=0 :
- ' @ O FEHANF = 4
() y=1+2z , : ESERSAERE . So p=-4 [V
Coy=ll-3 : 4 L - THHEHESE O () £9QR=51° (alk. Zs, | lines) [%
S0 1--2z=11-3z v/ : AR /STR = 51° (/s on same arc) v
PO bz =10 o . , : ' (i) LTQS = 36° (£ sum AT'SQ)
So " m=12 : - BRNITN AN T or
(iil) ZSTU = 36° (£ in alt. seg. theorem)

So y=25 ’ ' ‘ : @

' - (i) 6 = 270°




I
z - 1) 4+ 22 - o o+ 2
o+
2 -
i
-2+ 2
=2 - 2
4

80 Q) =a® +a-2  []
(b) (i) ~Lor (0,-1)

(ii) Cuts z-axis where 3% —2 =0

So . 35 =12 @

So zlog3 = log2 (Base of log not necessary)
log 2
5 =0
© ] ¢ log 8
So T =~ 0-6

So the curve cuts the 3-axis at 0-6 or (0:6,0) (1 d.p.)

(it

=

Horizontal asymptote is y = —2 @

3
o,

() | R EAEEARREE et

Deduct one for axial intercepts not labelled.
Shape should be clear. :

(1)

vy
One for reasonable shape and one for the graph
approaching the asymptotes correctly.

x —6 -3 -2 -1 1 2 3 6
y 1 2 3 6 6 | -3 | -2 | —1
V| (Deduct 1 for each error.)
{ |9 :
" |
r
Ji
!
i
il
e {
‘w
2] » | =




(d) (i) By the remainder theorem:

a®—13a+14 =2

So a,3~13a+12::0

(ii) By inspection a = 1 is a solution. [Z‘
Either by further inspection or long division:

(a—1)(a® +a—12) =0 |Z| for this or the long division below.

> + a4 — 12
o -1 — 130 + 12
3 2
a? — 13a
a — a
120 + 12
120+ 12
0

So (a—1)a+4)a—3)=0

Soa=—4, lor3

(a) QT x RT = PT? (tangent/secant theorem) E
So (4+2) x 4 =67

So da=9 .
So v ox=25cn Y
(v) |
AR
<y
/
i
- '3
y =
= AT & 4 g
AT JiT= 2N
N\~
7 Y
.4
yi
7 \ Hl
/
Y/ \
EN 1 X" ;
7 /
\\EI

(corrept roots / l
(€} (i) The degree of P(z) + Q(z) =n
(i) The degfee of P(x) X Q(z) =n--m

(d) (i) Gradient of tangent = 6.
Hence the gradient of the line L is —%

I axial intercepté 4 |

(i) So PQisy—~5=—g(z—4)
So 6y—30=—-a+4
Sox+6y—34=0, as reéquired.
(ili) Solve simultaneously: *
z+4+6y—-34=0
rc_2 —2x—-3=y
So % +62” — 12z ~ 18 =34 =0

So 82?2 — 1lg — 52 =0

So (62 4 13)(z — 4) =0
So rc=~»1§°—’ or-w = IE
Soat Q, z=—3

andQ,y:(34+%)+6:§éz
2

SoQis (—%,3) or (-

@i
‘O}

3);

N

shape +/




(e) The first piece of data yields: 7. (a) The probability the team wins is two mutually exclusive events.

8w =Ty 412 " : . e S, !
So Pt = - t " :
The second piece of data yields: So P(team wins) = P(Win with Mango) + P(Win without Mango)
13y =9z47 ‘ co 8l 1,2 '
- : P(team wing) = § X z 4+ X %
So 8z—Ty=12 , _ ( ) £7eTaTs
4173
9z — 13y = -7 2
Y @ : . So P(team wins) =

X 9 : 723 — 63y = 108 _ '

X 81 720 — 104y = —56 () (i) LACB =90° (£ in a semi-circle = 90°)

@ h c4ly =164 . Sogzcosa
So y=4 . ) y
So z = %(12 7 x 4) So AC : ycos o, as required.
So @ =5 . (i) AABDyz 90° (tangent meets a radius)
So Jake walks at 5lom/h and Fiona walks at 4kin/h ' S0 Ap " cose

; i : i Ty
(1) §log,(abe) ~ §log, (b/e) ~ Jlog, e =0 | So AD= s
1 . 1 1 .

So  log,(abc)? =10g, (bv/e)? + §logy et , But OD = AD — AC
So  log,(abe)¥ =lo (b223 , o : :

gl(laf)l gw] (o) ) So OD=—Y —ycosw E
So abbhscd = pEotod
So at = b% ke < —cosa

cos &
So =b%c% , as required. - ' 1~ cos?
: , cos & >
» <sm a) 5
=y , as sma[—cos a=1.
cos o
ysmah-
cosa

: . sina
So CD=ysinatana, as
cos &

(c) (i) tan(180° — 3) = —tanz m
(i) (@) C=180°—(A+ B)(/sum AABC =180°)
So tan C' = tan (180° — (4 + B))
= —tan(4 + B)
tan A + tan B

1—tanAtan B
_ArZ
1-1x2

SotanC =3



k

() I tand =k then sinf = 80:

1+ A2 - . :
s,inA:%
o 2
smBﬁ—\/—~5
sin ¢ = ——
V10

a . b c
[ S e
V2 V5 V10

So = — =

@ 6 ‘(y-—i)szyww%%

1 ]
But y——':\/§,asy~%>0
Y

% ya_ggs (\/5)3+3\/§

(iii) Now <1 - 3>2 =3

p 2
So <y2+2—/15) =25

So  yt424 = =25

Yy
, : 1 .
So y4v]iy—4———23

If y is found explicitly (y =1(V3+VT7) & %} =37~ \/§)> then one mark

out of four may be awarded for parts (ii) and (iii).

m10y4Sotns  4/11/10 REP SGS November 2010




