2010 Annual Examination # FORM IV **MATHEMATICS** Monday 1st November 2010 ### General Instructions - Writing time 2 hours - Write using black or blue pen. - Board-approved calculators may be used. - All necessary working should be shown in every question. - Start each question on a new page. # Structure of the paper - Total marks 112 - All seven questions may be attempted. - All seven questions are of equal value. ### Collection - Write your name, class and master clearly on each page of your answers. - Staple your answers in a single bundle. - Write your name and master on this question paper and submit it with your answers. | 4A: | MW | 4B: | $_{\rm BR}$ | |------|---------|-----|-------------| | 4773 | במבו כו | 477 | 3 575 | 4F: MK 4E: REP 4I: JMR 4J: MLS - Willing paper required. - Candidature 189 boys Examiner SGS Annual 2010 Form IV Mathematics Page 2 QUESTION ONE (16 marks) Start a new page. - (a) Find the gradient of the straight line 5y = 2x + 20. - (b) Use your calculator to find the value of $\sqrt{234 + 877 \times 23 \cdot 3}$ correct to three decimal places. - (c) Expand and simplify: - (i) (x-6)(x+6) - (ii) (2x+3)(x-3) - (d) Find 32% of 225. - (e) If $W(x) = 1 + 3x^3$ find W(2). - (f) If two twenty-cent coins are tossed what is the probability that both coins will land tails up? - (g) Simplify as a single logarithm to base 5 the expression $\log_5 x \log_5 y$. - (h) How much interest would you earn if you invested \$7000 at 8% p.a. simple interest for four years? Give your answer correct to the nearest dollar. - (i) Simplify $(s^4t^3)^5$. - (j) Solve $(x-4)^2 = 0$ (k) In the diagram above find an expression for $\cos \theta$. (1) Rewrite the equation $3^7 = 2187$ in logarithmic form. Exam continues next page ... SGS Annual 2010 Form IV Mathematics Page 3 QUESTION ONE (Continued) (m) Find the size of the angle marked x, giving a suitable geometric reason. (n) Where does the parabola y = (x + 1)(x - 3) cut the y-axis? SGS Annual 2010 Form IV Mathematics Page 4 QUESTION TWO (16 marks) Start a new page. - (a) Consider the circle $x^2 + y^2 = 144$. - (i) What point on the number plane is the centre of the circle? - (ii) Write down the radius of the circle. - (b) Solve: (i) $$(3x-5)(x+7)=0$$ (ii) $$x^2 - 3x - 10 = 0$$ (iii) $$(x-3)^2 = 16$$ (c) Solve the following pair of equations simultaneously. $$y = 1 + 2x$$ $$y = 11 - 3x$$ (d) Find the area of the triangle above. Give your answer correct to two decimal places. - (e) How much would you expect to pay in interest if you borrowed \$30000 at 8% per annum compounded annually for 10 years? Give your answer correct to the nearest dollar. - (f) By completing the square express $x^2 8x + 19$ in the form $(x \alpha)^2 + \beta$, where α and β are positive integers. QUESTION THREE (16 marks) Start a new page. (a) Express $\frac{\sqrt{7}}{\sqrt{7}-1}$ in its simplest form with a rational denominator. (b) Solve $$\cos x = -\frac{1}{\sqrt{2}}$$ for $0^{\circ} \le x \le 360^{\circ}$. (c) In the diagram above $\triangle ADB$ is similar to $\triangle ABC$ with $AB=2\cdot 5\,\mathrm{cm}$, $DB=2\,\mathrm{cm}$ and $CB=5\,\mathrm{cm}$. - (i) Find the length of AD. - (ii) Find the ratio of the area of $\triangle ADB$ to the area of $\triangle ABC$. - (d) Use the remainder theorem to find the remainder when $x^3 7x^2 + 5$ is divided by x 1. - (e) Use the quadratic formula to solve $x^2 = 2(3x + 1)$. Express your answer in simplest exact form. (f) Find the value of θ correct to the nearest degree. - (g) Find the volume of a pyramid with a square base of side 5 cm and perpendicular height 6 cm. - (h) Solve by completing the square $$x^2 + 6x - 1 = 0.$$ Give your answers correct to three decimal places. Exam continues overleaf ... SGS Annual 2010 Form IV Mathematics Page 6 QUESTION FOUR. (16 marks) Start a new page. (a) Find x given that $\sqrt{18} + \sqrt{8} = \sqrt{x}$. (b) Find x correct to three decimal places. - (c) (i) Draw a neat sketch of the graph of $y = \sin \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$. - (ii) Hence, or otherwise, solve $\sin \theta = -1$ for $0^{\circ} \le \theta \le 360^{\circ}$. (d) The chord AB and the diameter CD of a circle, centre O, intersect at X. CX=XO, CD=8 cm and AX=3 cm. Find, stating all reasons, the length of XB. (e) Find p if (x-2) is a factor of $x^3 + px^2 + x + 6$. SGS Annual 2010 Form IV Mathematics Page 7 QUESTION FOUR (Continued) (f) In the diagram PU is a tangent touching the circle at T. TS is parallel to PR. In each of the following three parts all necessary geometric reasons must be given. Exam continues overleaf ... - (i) Prove that $\angle STR = 51^{\circ}$. - (ii) Find $\angle TQS$. - (iii) Find \(\mathcal{L}STU \). SGS Annual 2010 Form IV Mathematics Page 8 QUESTION FIVE (16 marks) Start a new page. (a) Use long division to find the polynomial Q(x) if $$\frac{x^3 + 2x^2 - x + 2}{x + 1} = Q(x) + \frac{4}{x + 1}.$$ - (b) Consider the curve $y = 3^x 2$. - (i) Find where the graph of the curve cuts the y-axis. - (ii) Find where the graph of the curve cuts the x-axis correct to one decimal place. - (iii) Find the equation of the horizontal asymptote. - (iv) Sketch the curve clearly showing all points of intersection with the axes. - (c) (i) Copy and complete this table of values for the curve $y = -\frac{6}{x}$ | x · | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 | |-----|----|----|----|----|---|---|---|---| | y | | | | | | | | | - (ii) Using the values in the table, sketch the graph of $y=-\frac{6}{x}$, clearly labelling the asymptotes. - (d) If the remainder when $x^3 13x + 14$ is divided by x a is 2. - (i) Show that $a^3 13a + 12 = 0$. - (ii) Hence find all possible values of a. QUESTION SIX (16 marks) Start a new page. (a) In the diagram above TP is a tangent, TP=6 cm, TR=4 cm and RQ=x cm. Find the value of x giving a suitable geometric reason. SGS Annual 2010 Form IV Mathematics Page 9 ### QUESTION SIX (Continued) (b) Sketch the graph of the polynomial $y = (x+1)^2(x-2)$. Clearly indicate the points where the graph intersects the axes. - (c) P(x) and Q(x) are polynomials. The degree of P(x) is n and the degree of Q(x) is m where n>m. - (i) What is the degree of P(x) + Q(x)? - (ii) What is the degree of $P(x) \times Q(x)$? (d) The tangent to the parabola $y = x^2 - 2x - 3$ at the point P(4,5) has a gradient of 6. The line through P perpendicular to the tangent cuts the parabola at Q. - (i) What is the gradient of the line PQ? - (ii) Show that the line PQ has equation x + 6y 34 = 0. - (iii) By solving simultaneously, find the coordinates of Q. - (e) In eight hours Jake walks twelve kilometres more than Fiona does in seven hours; and in thirteen hours Fiona walks seven kilometres more than Jake does in nine hours. If Jake walks at x kilometres per hour and Fiona walks at y kilometres per hour, form a pair of simultaneous equations and solve them to find how fast each of Jake and Fiona walk. - (f) If $\frac{1}{6}\log_x(abc) \frac{1}{2}\log_x(b\sqrt{c}) \frac{1}{3}\log_x c = 0$, prove that $a^2 = b^4c^5$. # QUESTION SEVEN (16 marks) Start a new page. (a) The Mighty Mango, star of the rugby XV is having injury problems. When he is playing the probability that his team will win is $\frac{3}{4}$, but otherwise it is only $\frac{1}{2}$. The probability that he will be fit for the next match is $\frac{1}{3}$. Find the probability that his team will win the match. Exam continues overleaf ... SGS Annual 2010 Form IV Mathematics Page 10 QUESTION SEVEN (Continued) (b) In the diagram above O is the centre of the circle and BD is a tangent; AB=y and $\angle DAB=\alpha$. - (i) Prove that $AC = y \cos \alpha$. - (ii) By using the trigonometric identies $\sin^2\alpha + \cos^2\alpha = 1$ and $\tan\alpha = \frac{\sin\alpha}{\cos\alpha}$ prove that $CD = y \sin\alpha \tan\alpha$. - (c) (i) Express $\tan(180^{\circ} x)$ in terms of $\tan x$. - (ii) Suppose A, B, C are the angles of a triangle and $\tan A = 1$ and $\tan B = 2$. - (a) Use the formula $\tan(x+y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$ to prove that $\tan C = 3$. - (β) If a b, c are the corresponding sides of the triangle, prove that $$\frac{a}{\sqrt{5}} = \frac{b}{2\sqrt{2}} = \frac{c}{3}.$$ - (d) (i) Expand $\left(y \frac{1}{y}\right)^3$. - (ii) If $\left(y \frac{1}{y}\right)^2 = 3$ and $y \frac{1}{y} > 0$, without finding the value of y find the value of: - $(\alpha) \ y^3 \frac{1}{y^3}$ - $(\beta) \ y^4 + \frac{1}{y^4}$ ### 16 marks per question ## Do not penalise omission of units - 1. (a) $\frac{2}{5}$ - (b) 143.764 - (c) (i) $x^2 36$ - (ii) $2x^2 3x 9$ - (d) 72 - (e) W(2) = 25 - (f) $\frac{1}{4}$ - (g) $\log_5 \frac{x}{y}$ - (h) $I = 7000 \times 0.08 \times 4$ - So I = \$2240 - (j) x = 4 - (m) $x = 73^{\circ}$ (Opp. \angle s cyclic quad. supplementary) - (n) -3 or (0, -3) - 2. (a) (i) Centre is (0,0) - (ii) Radius = 12 - (b) (i) $x = \frac{5}{3}$ or -7 - $x^2 3x 10 = 0$ So (x-5)(x+2) = 0So x = -2 or 5 - (iii) $(x-3)^2 = 16$ So $x - 3 = \pm 4$ So $x = 3 \pm 4$ - x = 7 or -1 - (c) y = 1 + 2xy = 11 - 3x - So 1 + 2x = 11 3x5x = 10 - So x=2 - y = 5 - (i) $s^{20}t^{15}$ - (k) $\cos \theta = \frac{c}{a}$ - (1) $\log_3 2187 = 7$ - (d) $A = \frac{1}{2} \times 6 \times 8 \times \sin 113^{\circ}$ So $A = 22.09 \, \text{units}^2 (2 \, \text{d.p.})$ - (e) Amt. owed = $30\,000(1+0.08)^{10}$.√ $=30\,000\times1.08^{10}$ - =64767.75So interest = \$34768(nearest \$) - (f) $x^2 8x + 19$ $=x^2-8x+16+3$ $=(x-4)^2+3$ 4. (a) (ii) $\theta = 270^{\circ}$ 3. (a) $\frac{\sqrt{7}}{\sqrt{7}-1} = \frac{\sqrt{7}}{\sqrt{7}-1} \times \frac{\sqrt{7}+1}{\sqrt{7}+1}$ $x = 180^{\circ} \pm 45^{\circ}$ $x = 135^{\circ} \text{ or } 225^{\circ}$ (Corr. sides proportional) $\cos x = -\frac{1}{\sqrt{2}}$ (c) (i) $\triangle ADB \parallel \triangle ABC$ So $\frac{AD}{2.5} = \frac{2}{5}$ (d) $R = 1^3 - 7 \times 1^2 + 5$ So R = -1 $\sqrt{18} + \sqrt{8} = \sqrt{x}$ (b) $x^2 = 4^2 + 5^2 - 2 \times 4 \times 5 \times \cos 30^\circ$ $x = 2.522 \, \text{units (3 d.p.)} \ x > 0$ So $3\sqrt{2} + 2\sqrt{2} = \sqrt{x}$ So $5\sqrt{2} = \sqrt{50} = \sqrt{x}$ So $x^2 \approx 6.35898...$ So $AD = 1 \, \mathrm{cm}$ (ii) Ratio of lengths is 2:5 So ratio of areas is 4:25 $=\frac{7+\sqrt{7}}{6}$ - - $x = 3 \pm \sqrt{11}$ - $\cos\theta = \frac{16^2 + 19^2 34^2}{2 \times 16 \times 19}$ - So $\theta = 152^{\circ} \text{ (nearest }^{\circ}\text{)}$ $V = \frac{1}{3} \times 5^2 \times 6$ - So $V = 50 \, \mathrm{cm}^3$ $x^2 + 6x - 1 = 0$ - So $x^2 + 6x + 9 = 10$ So $(x+3)^2 = 10$ $x + 3 = \pm \sqrt{10}$ - $x = -3 \pm \sqrt{10}$ - x = 0.162 or -6.162 - (d) CX = 2 (radii & X bisects CO) Similarly, XD = 6Now $AX \times XB = CX \times XD$ (int. chords theorem) So $3XB = 2 \times 6$ So $XB = 4 \,\mathrm{cm}$ - (e) x-2 is a factor, so - $2^3 + 2^2 \times p + 2 + 6 = 0$ 8 + 4p + 8 = 0 - (f) (i) $\angle SQR = 51^{\circ}$ (alt. $\angle s$, | lines) - $\angle STR = 51^{\circ} (\angle s \text{ on same arc})$ (ii) $\angle TQS = 36^{\circ} (\angle \text{sum } \triangle TSQ)$ - (iii) $\angle STU = 36^{\circ} (\angle \text{ in alt. seg. theorem})$ p = -4 5. (a) So $Q(x) = x^2 + x - 2$ - (b) (i) -1 or (0, -1) - (ii) Cuts x-axis where $3^x 2 = 0$ $$B^x = 2$$ $x \log 3 = \log 2$ (Base of log not necessary) $$x = \frac{\log 2}{\log 3}$$ $$x \approx 0.6$$ So the curve cuts the x-axis at 0.6 or (0.6, 0) (1 d.p.) (iii) Horizontal asymptote is y = -2 Deduct one for axial intercepts not labelled. Shape should be clear. (c) (i) | x | 6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 | | |---|---|----|----|----|---|----|----|----|--| | y | 1 | 2 | 3 | 6 | 6 | -3 | -2 | -1 | | One for reasonable shape and one for the graph approaching the asymptotes correctly. (d) (i) By the remainder theorem: $$a^3 - 13a + 14 = 2$$ So $a^3 - 13a + 12 = 0$ (ii) By inspection a = 1 is a solution. $\boxed{\checkmark}$ Either by further inspection or long division: $(a-1)(a^2+a-12)=0$ $\boxed{\checkmark}$ for this or the long division below. So $$(a-1)(a+4)(a-3) = 0$$ So $a = -4$, 1 or 3 $\sqrt{\ }$ 6. (a) $QT \times RT = PT^2 \text{ (tangent/secant theorem)}$ So $(4+x) \times 4 = 6^2$ So $$4 + x = 9$$ So $$x = 5 \text{ cm}$$ correct roots √ axial intercepts $\sqrt{}$ shape V $\sqrt{}$ (c) (i) The degree of $$P(x) + Q(x) = n$$ (ii) The degree of $$P(x) \times Q(x) = n + m$$ (d) (i) Gradient of tangent = 6. Hence the gradient of the line \perp is $-\frac{1}{6}$ $\sqrt{.}$ (ii) So $$PQ$$ is $y-5=-\frac{1}{6}(x-4)$ So $6y-30=-x+4$ So $x+6y-34=0$, as required. $\sqrt{}$ (iii) Solve simultaneously: $$x + 6y - 34 = 0$$ $$x^{2} - 2x - 3 = y$$ So $$x + 6x^{2} - 12x - 18 - 34 = 0$$ So $$6x^{2} - 11x - 52 = 0$$ So $$(6x + 13)(x - 4) = 0$$ So $x = -\frac{13}{6}$ or $x = 4$ So at $$Q$$, $x = -\frac{13}{6}$ and Q , $y = (34 + \frac{13}{6}) \div 6 = \frac{37}{6}$ So Q is $(-\frac{13}{6}, \frac{37}{6})$ or $(-2\frac{1}{6}, 6\frac{1}{6})$ $$8x = 7y + 12$$ The second piece of data yields: $$13y = 9x + 7$$ So $$y=4$$ So $$x = \frac{1}{8}(12 + 7 \times 4)$$ So $$x = 5$$ $$\sqrt{}$$ f) $$\frac{1}{6}\log_x(abc) - \frac{1}{2}\log_x(b\sqrt{c}) - \frac{1}{3}\log_x c = 0$$ So $\log_x(abc)^{\frac{1}{6}} = \log_x(b\sqrt{c})^{\frac{1}{2}} + \frac{1}{3}\log_x c^{\frac{1}{3}}$ So $$\log_x(abc)^{\frac{1}{6}} = \log_x\left((bc^{\frac{1}{2}})^{\frac{1}{2}}c^{\frac{1}{8}}\right)$$ So $$a^{\frac{1}{6}}b^{\frac{1}{6}}c^{\frac{1}{6}} = b^{\frac{1}{2}}c^{\frac{1}{4}}c^{\frac{1}{3}}$$ So $$a^{\frac{1}{6}} = b^{\frac{1}{3}} c^{\frac{5}{12}}$$ So $$a^2 = b^4 c^5$$, as required. 7. (a) The probability the team wins is two mutually exclusive events. So $$P(\text{team wins}) = P(\text{Win with Mango}) + P(\text{Win without Mango})$$ $$P(\text{team wins}) = \frac{3}{4} \times \frac{1}{3} + \frac{1}{2} \times \frac{2}{3}$$ $$= \frac{1}{4} + \frac{1}{3}$$ So $P(\text{team wins}) = \frac{7}{12}$ (b) (i) $\angle ACB = 90^{\circ} (\angle \text{ in a semi-circle} = 90^{\circ})$ So $$\frac{AC}{y} = \cos \alpha$$ So $$AC = y \cos \alpha$$, as required. (ii) $$\angle ABD = 90^{\circ}$$ (tangent meets a radius) So $$\frac{y}{AD} = \cos \alpha$$ So $$AD = \frac{y}{\cos \alpha}$$ But $$CD = AD - AC$$ So $$CD = \frac{y}{\cos \alpha} - y \cos \alpha$$ $\sqrt{}$ $$= y \left(\frac{1}{\cos \alpha} - \cos \alpha \right)$$ $$= y \left(\frac{1 - \cos^2 \alpha}{\cos \alpha} \right)$$ $$= y \left(\frac{\sin^2 \alpha}{\cos \alpha} \right), \text{ as } \sin^2 \alpha + \cos^2 \alpha = 1.$$ $$= y \sin \alpha \frac{\sin \alpha}{\cos \alpha}$$ So $$CD = y \sin \alpha \tan \alpha$$, as $\frac{\sin \alpha}{\cos \alpha} = \tan \alpha$. (c) (i) $$\tan(180^{\circ} - x) = -\tan x$$ (ii) (a) $$C = 180^{\circ} - (A + B) (\angle \text{sum } \triangle ABC = 180^{\circ})$$ So $$\tan C = \tan (180^{\circ} - (A+B))$$ $$= -\tan(A+B) \qquad \boxed{\checkmark}$$ $$= -\frac{\tan A + \tan B}{1 - \tan A \tan B}$$ $$= -\frac{1+2}{1-1\times 2}$$ So $$\tan C = 3$$ ($$\beta$$) If $\tan \theta = k$ then $\sin \theta = \frac{k}{\sqrt{1 + k^2}}$ so: $$\begin{cases} \sin A = \frac{1}{\sqrt{2}} \\ \sin B = \frac{2}{\sqrt{5}} \\ \sin C = \frac{3}{\sqrt{10}} \end{cases}$$ All three ratios must be found. Hence by the sine rule: So $$\frac{\frac{a}{1}}{\frac{1}{\sqrt{2}}} = \frac{b}{\frac{2}{\sqrt{5}}} = \frac{c}{\frac{8}{\sqrt{10}}}$$ $$\frac{a}{\sqrt{5}} = \frac{b}{2\sqrt{2}} = \frac{c}{3} \qquad \boxed{\checkmark}$$ (d) (i) $$\left(y - \frac{1}{y}\right)^3 = y^3 - 3y + \frac{3}{y} - \frac{1}{y^3}$$ (ii) From (i) $$y^3 - \frac{1}{y^3} = \left(y - \frac{1}{y}\right)^3 + 3\left(y - \frac{1}{y}\right)$$ But $y - \frac{1}{y} = \sqrt{3}$, as $y - \frac{1}{y} > 0$ So $$y^3 - \frac{1}{y^3} = (\sqrt{3})^3 + 3\sqrt{3}$$ So $$y^3 - \frac{1}{y^3} = 6\sqrt{3}$$ (iii) Now $$\left(y - \frac{1}{y}\right)^2 = 3$$ So $$y^2 - 2 + \frac{1}{y^2} = 3$$ So $$y^2 + \frac{1}{y^2} = 5$$ So $$\left(y^2 + \frac{1}{y^2}\right)^2 = 25$$ So $$y^4 + 2 + \frac{1}{y^4} = 25$$ So $$y^4 + \frac{1}{y^4} = 23$$ If y is found explicitly $\left(y = \frac{1}{2}(\sqrt{3} + \sqrt{7}) \& \frac{1}{y} = \frac{1}{2}(\sqrt{7} - \sqrt{3})\right)$ then one mark out of four may be awarded for parts (ii) and (iii).