

2009 Annual Examination

FORM II **MATHEMATICS**

Wednesday 4th November 2009

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Calculators are not to be used.
- All necessary working should be shown in every question.
- Start each question on a new page.

Structure of the paper

- Total marks 130
- All ten questions may be attempted.
- All ten questions are of equal value.

Collection

- Write your name, class and master clearly on each page of your answers.
- Staple your answers in a single bundle.

2A: MW 2E: DNW 2B: SO

2C: JMR

2D: BR

2I: SJE

2F: MLS

2G: BDD

2H: KWM

2J: TCW

Checklist

- Writing paper required.
- Candidature -- 192 boys

Examiner

SJE

SGS Annual 2009 Form II Mathematics Page 2

QUESTION ONE (13 marks) Start a new page.

- (a) Calculate:
 - (i) -12 + 105

 - (iii) $\frac{3}{4} \frac{7}{8}$
 - (iv) 0.04×1.5
- (b) Find 8% of 400.
- (c) Simplify:
 - (i) 48:33
 - (ii) $a^6 \div a^2$
 - (iii) $2b^2 7b + 2b$
- (d) Factorise 3x 12y.
- (e) Simplify $5x^2 \times (-x)$
- (f) Solve $\frac{x}{4} + 3 = -4$.

(g)

State which congruence test would be used to show that $\triangle ABC \equiv \triangle DBC$. Do not prove your result.

QUESTION TWO (13 marks) Start a new page.

- (a) Evaluate:
 - (i) $16 5 \times 7$
 - (ii) $1.3 \div 0.2$
- (b) Convert $\frac{3}{8}$ to a percentage.
- (c) Simplify $\frac{6b}{3b^2}$
- (d) Express $16\frac{1}{2}\%$ as a fraction in simplest form.
- (e) Expand and simplify (x+3)(2x-1).
- (f) Divide \$63 in the ratio 5: 2.
- (g) Find the average speed of a car that travels 75 km in $1\frac{1}{2}$ hours.

(h)

Find the value of β in the diagram above, giving a reason.

(i)

In the diagram above find the length of the unknown side a.

Exam continues overleaf ...

SGS Annual 2009 Form II Mathematics Page 4

QUESTION THREE (13 marks) Start a new page.

(a) Calculate:

- (i) $4^3 4^2$
- (ii) $\frac{1}{7} + \frac{2}{3}$
- (b) Solve 3x 2 = 5 + x.
- (c) Express the ratio $\frac{3}{8}:\frac{1}{4}$ in simplest form.
- (d) (i) Draw a number plane clearly marking the axes, the origin O and the points A(1,-2) and B(-2,2).
 - (ii) Use Pythagoras' Theorem to find the length of the interval AB.

(e)

Find the area of the circle above. Use $\pi = 3.14$.

(f)

In the diagram above AB and CD are straight lines. Find the values of x and y, giving reasons.

Exam continues next page ...

QUESTION FOUR (13 marks) Start a new page.

- (a) Simplify $p^2 + p 2p(1-p)$.
- (b) A number is multiplied by 3 and then 11 is added to the result. The answer is 233.
 - (i) Form an equation involving the unknown number.
 - (ii) Solve this equation to find the number.
- (c) Solve $x + \frac{3}{2} > \frac{1}{2}$ and graph your solution on a number line.

(d) Solve
$$\frac{m+2}{3} - m = 4$$
.

(e) (i) Copy and complete the following table for y = 2x + 3.

\boldsymbol{x}	-2	0	2
y			

- (ii) Plot the points from the table on a number plane and hence sketch the line y=2x+3.
- (iii) On the same number plane draw the line x = -1.
- (iv) State the coordinates of the point of intersection of the lines y = 2x + 3 and x = -1.

(f)

Find the area of the trapezium ABQD drawn on the number plane above.

SGS Annual 2009 Form II Mathematics Page 6

QUESTION FIVE (13 marks) Start a new page.

- (a) Factorise fully $6ab^2 9a^2$.
- (b) Calculate $3\frac{1}{3} \div 3\frac{1}{2}$.
- (c) Solve $\frac{3}{x} 4 = 12$.
- (d) A 1 litre carton of milk is in the shape of a rectangular prism. If the base measures 8 cm by 5 cm what is its height?
- (e) A rectangular camping area measures 5 m by 12 m. A tent with rectangular base dimensions of 3 m by 4 m is erected in the camping area.
 - (i) What area is not covered by the tent?
 - (ii) What are the dimensions of the largest rectangular groundsheet that can fit in the remaining area?

(f)

The above figure is formed by gluing a cube of side length 2 cm on top of a cube of side length 5 cm. Find the surface area of the figure.

QUESTION SIX (13 marks) Start a new page.

(a) Name all special quadrilaterals from the following list that must have at least one pair of adjacent sides equal.

Kite Parallelogram Rectangle Rhombus Square Trapezium

- (b) A wet towel weighs 4.0 kg. It is hung out to dry and when dry it weighs 0.6 kg. Calculate the percentage of the wet towel's weight that was lost.
- (c) The dimensions of a rectangular box are in the ratio 2:3:5. If the box has a volume of $1920\,\mathrm{cm}^3$, find its dimensions.

(d)

In the diagram above ABCD is a parallelogram. It is known that DE bisects AB and BF bisects DC.

- (i) State why AD = BC.
- (ii) Prove formally that $\triangle ADE \equiv \triangle CBF$.
- (iii) Hence state why $\angle ADE = \angle CBF$.
- (e) Perform the constructions outlined on the tear-off sheet at the end of this examination paper. This sheet should be bundled with the rest of your Question Six.

SGS Annual 2009 Form II Mathematics Page 8

QUESTION SEVEN (13 marks) Start a new page.

- (a) Simplify $\frac{1}{2} \times \frac{1}{3} \frac{1}{4} \div \frac{1}{5} + \frac{1}{6}$.
- (b) Calculate $23\frac{1}{4} 16\frac{3}{5}$.
- (c) Evaluate $\frac{5a}{-2b^2}$, when a = 3 and b = -15.
- (d) Solve x + 4.505 = 1.038.

(e)

Find the volume of solid steel beam above.

(f)

Find x giving reasons.

QUESTION EIGHT (13 marks) Start a new page.

- (a) Simplify $\frac{24xy^5}{(3x^2y)^2}$.
- (b) Evaluate $\frac{5}{3 + \frac{4}{2 \frac{2}{3}}}$
- (c) A certain cordial mix is 20% water. How many litres of water must be added to 50 L of this mix to produce a mixture that is $33\frac{1}{3}\%$ water?

(d)

The triangle ABC above looks like it is right-angled at C. Use Pythagoras' Theorem to verify whether it is or not.

(e)

The Go-Kart track above is made of semi-circular turns and two straight sections. All measurements are in metres.

- (i) Find the perimeter of the track. Use $\pi = \frac{22}{7}$.
- (ii) If the lap record is 20 seconds determine the average speed to the nearest km/h.

Exam continues overleaf ...

SGS Annual 2009 Form II Mathematics Page 10

QUESTION NINE (13 marks) Start a new page.

(a) Solve $\frac{3k-2}{3} - \frac{k+1}{2} = 4 + k$.

(b)

In the diagram above OABC is a parallelogram. Write down the coordinates of B in terms of p,q and r.

(c)

In the diagram above, the cube has integers -1 or 1 at each vertex. However, the number at one vertex is unknown and is labelled y. Each of the six faces has a value formed by multiplying the vertices on that face.

- (i) Write down the six expressions that represent the values of the faces.
- (ii) Find the sum when all 14 values of those at the vertices and those on the faces are added together.

(d)

A line AB cuts off part of circle of radius 4 cm, as shaded in the diagram above. Find an exact expression for the shaded area.

(e)

A particular type of clay house brick is a rectangular prism with eight cylindrical holes. Its dimensions are given in the diagram above.

- (i) Calculate the volume of clay in this brick. Use $\pi = \frac{22}{7}$.
- (ii) If the density of clay is 2000 kg/m³, determine the mass of a brick.

SGS Annual 2009 Form II Mathematics Page 12

QUESTION TEN (13 marks) Start a new page.

(a) If
$$\left(t - \frac{1}{t}\right)^2 = 5$$
, find the value of $t^2 + \frac{1}{t^2}$.

- (b) The value of 1 Australian dollar is 0.92 US dollars. How many Australian dollars will 100 US dollars buy? Give your answer to the nearest cent.
- (c) The profits from a small company are shared equally between the management team and the staff. The management team of Fred, Daphne and Velma share their half of the profits equally. The staff of Alvin, Simon and Theodore split their half of the profits in the ratio 4:3:2 respectively. It is known that Fred received \$280 more than Theodore. How much profit did the company make?

A circular piece of paper with an unknown radius R has a 120°-sector cut out, as in the diagram above. The remaining sector is folded so that X joins Y to make a circular cone.

- (i) Find an expression in terms of R for the circumference of the base of the cone.
- (ii) Find the radius r of the base of the cone and hence find an exact expression for the height h of the cone. (Both answers will be expressed in terms of R.)
- (iii) If the height of the cone is $7\sqrt{5}$ cm, find the radius of the original piece of paper.
- (e) Water can be pumped into a tank by two pipes A and B. The tank can also be emptied by a pipe C. Pipe A can fill the empty tank in 4 days working alone and pipe B can fill the empty tank in 6 days working alone. Pipe C empties the full tank in 5 days working alone. In order to fill the empty tank Farmer Hayes opens pipes A and B and closes pipe C.
 - (i) What fraction of the tank would be full after 2 days?
 - (ii) Suppose when he opened pipes A and B, he accidently left pipe C open. What percentage of the tank would be full after the two days?

END OF EXAMINATION

SGS Annual 2009 Form	n II Mathematics	Page 13		
Name:	Class:	MASTER:		
DETACH THIS SHEET AND BINDLE IT WITH THE DEST OF OLIDSTION SIX				

QUESTION SIX

- (e) In the following constructions leave all construction arcs visible.
 - (i) Copy $\angle XYZ$ at A below to form $\angle BAP$.
 - (ii) Construct $\angle ABQ = 60^{\circ}$.
 - (iii) Let AP and BQ intersect at C. Draw $\triangle ABC$.

			•
Question 5	$\frac{cf_{3} SA = 6x5^{2} + 4x2^{2}}{= 150 + 16}$	Question 7	(f) LEBD +75° = 125° (exterior angl
(a) $6ab^2 - 9a^2 = 3a(2b^2 - 3a)$	= 166 cm ² //	(a) $\frac{1}{2} \times \frac{1}{3} - \frac{1}{4} \div \frac{1}{5} + \frac{1}{6}$	(ESD = 50° (A BED)"
$3\frac{1}{3} \div 3\frac{1}{2} = 10 \div \frac{17}{2}$	Question 6	$= \frac{1}{6} - \left(\frac{1}{4} \times \frac{5}{6}\right) + \frac{1}{6}$	$x + .50^{\circ} + 95^{\circ} = 188^{\circ}$ (Straight ongle) $x = 180^{\circ} - 95^{\circ} - 50^{\circ}$
$\frac{1}{3} \times \frac{2}{7}$	(a) Kite Rhambus Square	6 4	= 35°
= 20 /	(b) Weight list × 100% = 3.4 × 100% on grand Weight 4		Question 8
$\frac{3}{2} + \frac{12}{2}$	Original Weight 7 = 85 %	= -11	$\frac{(a)}{(3z^2y)^2} = \frac{24zy^5}{9x^4y^2}$
$\frac{3}{3} = \frac{3}{6}$ $x = \frac{3}{6}$	(c) Let the dinensions be 22,32,52	(b) $23\frac{1}{4} - 16\frac{3}{5}$ = $23 + 1 - 16 - 3$	(b) 5 5 5
2, (1)	$\frac{S_0}{S_0} = \frac{2x \times 3x \times 5x = 1920 \text{ cm}^3}{30 \times 3} = 1920 \text{ cm}^3$	$= 23 + \frac{1}{4} - 16 - \frac{3}{5}$ $= 22 + 5 - 16 - \frac{3}{5}$	$\frac{3+\frac{4}{2-\frac{2}{3}}}{2-\frac{2}{3}} = \frac{3+\frac{4}{2}}{\frac{4}{2}}$
- 1000 cm3	$2x^3 = 64 \text{ cm}^3$	- 6 + 25-112 20	= 5
San San	. Diminione are & X 12 x 20 cm	$\frac{20}{5}$	(C) Ich the amount (is L) of water to be added be it
(h x 5 x 8) c 3 - (000 c m 3	(d.) (i) Opposte sides da perallelagram	(c) 5a = 5(3) -2615)2	$\frac{10 + 72}{50 + 7} = \frac{1}{3}$
= 25 cm	are equal	- 15	30+3× = 50 4x 2x - 20
4 m	(ii) In ADE; and DCBF AD = BC (appoils rides of parallegram)	= 1	in 10 h of water mot be add
12m	LDAE = LBCF (apposite angles of a prollebogram) AE = CF (glven) ADDE = ACBF (SAS)	(d) $x + 4.505 = 1.038$ 3.467 = $-x$	$(d) co^2 = 2o^2 - 16^2$
5 _m	AE = CI - (glven) $ADE = ACBF (SAS) /$	(e) $V = Ah$	= 144
Remainly bea = (0×12) - (3×4) m ² - 48 m ²	(III) matching angles of Congnet	$= (1 \times 15 + 1 \times 15 + 1 \times 26)$ $= (1 \times 15 + 1 \times 15 + 1 \times 26)$ $\times 500 \text{ cm}^3 \text{ V}$	$\frac{DB^{2}-15^{2}-12^{2}}{-81}$ -81 $-98=9$
	a see tear-off short VIV	$= 58 \times 500 \text{ cm}^{3}$ $= 29000 \text{ cm}^{3} /$	Now AB = 16+9
288			

Extract (a) Carbon 9 Question to Account) An ABC is explained (28 - 2) - 2/(1 + 1) + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	i		
A186 s, right-and 2(31-2)-2(811):6(4+16) 121-2 right-and at 122	Destion 8 (ant)	aleghon 9	Question 10
lythopone at held (2 16 - 40 - 31 - 31 - 24 toth (3 16 - 40 - 68 - 31 - 31 - 41 toth (4 16 - 40 - 68 - 31 - 31 - 41 toth (5 16 - 40 - 68 - 31 - 31 - 41 toth (6 16 - 4 - 31 - 31 - 31 - 41 toth (7 16 16 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4	d(cost)	(a) $\frac{3k-2}{3} = \frac{k+1}{2} = \frac{4+k}{3}$	$\frac{1}{(a)} \left(\frac{t-\frac{1}{b}}{t} \right)^{2} = \frac{t^{2}-2b}{t} + \frac{1}{t^{2}}$
185 7 287 185 7 287 185 7 287 185 8 287 180 181 2 28 1 157 180 180 180 180 180 180 180 180 180 180			$\frac{1}{2} + \frac{1}{4} = -2$
RHS - 20" H.S" - 400 + 225 - 625 - 625 - 625 - 625 - 625 - 626 -	12 AB2- AC2 + CB2	-3k = 31	$\begin{array}{c} = 5 \\ \vdots \\ t^2 + \frac{1}{4} + 7 \end{array}$
- 400 + 225 - 615 - 615 - 615 - 615 - 615 - 615 - 616 - 616 - 617 - 618 - 6	= 625		b) 1/40 = 0.92 USD
ABC			
(ii) -1-1 + y + 1 + 1 + 1 + 1	= 625 = 14S	(c); y, -1, -y, 1, 1, -y	1 \$ 1 00 USD = \$ 108.70 AVD
(i) Auroge Speed: (ii) Auroge Speed: (iii) Auroge Speed: (iii) Parrity: 2000 Lapton (iv) Parrity: 2000 Lapton	c' ABC is right-agled.	(ii) -1-1+y+1+1+1-1 + y-1-y+1+1-y	a) let the profits he x
(d) Area = 1 777 - 1(4-4) / Son 2 - 2x + \$280 = 287 + 16	Perinter = 1 (55+3+7+6+7) 7-	= 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 1/(5+3+7+6+7)=+16	(d) Area = 1 0742 - 1(4x4)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104 m		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii) Average Speed: La4m	$\frac{-8(\pi /^2 \times 7)}{-8(\pi /^2 \times 7)}$	
$= \frac{18.72 \text{ km/h}}{19 \text{ km}} = \frac{2000.000 \text{ g}}{1000.000 \text{ g}} = \frac{1000}{3}$ $= \frac{2000.000 \text{ g}}{1000.000 \text{ cm}^{3}} = \frac{4 \text{ nR}}{3}$ $= \frac{2 \text{ g/cm}^{3}}{3} = \frac{2 \text{ g/cm}^{$	= 0,104 km	27 / 3	(d) i) Circuference of base = 2 271R
$\frac{1}{2} \frac{19 \text{ km}}{100000000000000000000000000000000000$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ii) Density = 2000 kg/m3	= 4 n R
$\frac{1}{12} = \frac{1}{12} $		= 2000.000 g	$\frac{(i)}{3}$ $2nr = \frac{4nR}{3}$
or 1.328 kg = R-4R		= 2 g(cm² /	$r = \frac{2R}{3}$
		: Mass 13 1328 ga	$h^2 = R^2 - \left(\frac{2R}{3}\right)^2$
		0- 1.328 kg	$= R^2 - \frac{4}{7}R^2$
$\frac{13}{3} + \frac{1}{3} \times 1$		(13)	$h = \frac{\sqrt{5}}{3} R$

Question 10 (cont.)	
d, (iii) (cont.) 7/5 = 1/5 R	
R - 21	
e/ (i) lipe A: 1' tout in 4 days i. 1 tout in 1 day	
Pipe B 1 fank in 1 day	
A and B + + + tank in I day	
= 5 tale is I day	
After 2 days! Tank : 2 = 5 f	W
(ii) 5 - 1 tank in I day	
= 13 tak in I day	
S. ofter 2 days 26 fell = 1	3 2 100 % JU 43'3 % JU
	(13)

NAME: CLASS: MASTER:

Detach this sheet and bundle it with the rest of question six.

QUESTION SIX

- (e) In the following constructions leave all construction arcs visible.
- (i) Copy $\angle XYZ$ at A below to form $\angle BAP$.
- (ii) Construct $\angle ABQ = 60^{\circ}$.
- (iii) Let AP and BQ intersect at C. Show $\triangle ABC$.

