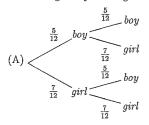


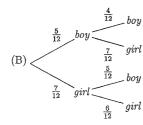
11MaA Class Test #3 29th June, 2004

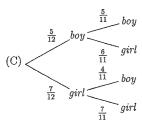
Topics: Series, Probability, Coördinate Geometry, Applications of Differentiation, and Approximate Methods of Integration

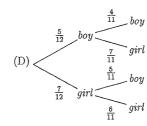
Instructions:

- 1. Time allowed is 90 minutes plus 5 minutes reading time.
- All necessary working must be shown for full marks.
 (Marks will be deducted for careless or badly-arranged work.)
- 3. Use black or blue pen for written answers, but pencil for diagrams and graphs
- 4. The value of each question is boxed in the left margin
- 5. Board-approved calculators may be used
- 1. Find the next two terms and write down the general term in the following series:
- (a) 18+16+14+12+...
- (b) 1024 512 + 256 128 + ...
- (c) $\sqrt{3} + \sqrt{12} + \sqrt{27} + \dots$
- [3] (d) 1+0+1+4+9+...
 - 2. From a pack of cards the four aces are turned face down on a table and thoroughly mixed. A girl selects one card. What are her chances of selecting:
- (a) the ace of clubs?
- (b) a red ace?
- [2] 3. (a) Which term of the series 7 + 12 + 17 + ... is 372?
- (b) Find the number of terms in an arithmetic series with a = 5, d = 2, and the last
- (c) Find the sum to 20 terms of the series whose nth term is 3n-1.
 - 4. At a school assembly 62% of the students said they were in favour of a new design for the school hat. If the principal asked a student at random about the proposed design, what is the probability that this student was:
- (a) in favour of the new design?
- (b) not in favour?


- 4 5. Prove by the methods of coördinate geometry that the mid point of the hypotenuse of any right triangle is equidistant from the vertices.
 - 6 Evaluate

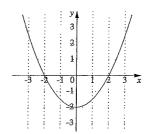

(a)
$$\sum_{n=4}^{14} (8-n)$$


$$\boxed{3}$$
 (b) $\sum_{n=1}^{7} (-5)^n$


- 3 7. Find the domain for which the curve $y = x^3 8x^2 + 6x 3$ is concave upwards.
 - 8. A number is formed using all five digits 2, 3, 4, 5, 6. What is the probability that the number:
- (a) starts with 4?
- (b) is even?
- (c) is odd?
- (d) is greater than 30 000?
- (e) is divisible by 3?
- 3 9. (a) If the nth term of a series is given by $U_n = 5n 23$, how many terms of the series are negative?
- $\boxed{3}$ (b) How many terms of the series $2+6+18+54+\ldots$ are needed to give a sum of 728?
 - (c) Can there be a geometric series with
- (i) a limiting sum of $\frac{2}{3}$ and a first term of 4?
- [2] (ii) a limiting sum of 4 and a first term of $\frac{2}{3}$?
 - 10. A mortgage of \$450 000 is taken out over a thirty year term at 6.9% p a (reducible).
- (a) Show that the amount owing after the first monthly payment will be \$45258750-Q, where Q is the monthly payment.
- (b) Find the value of Q.
- (c) After 10 years the partner begins to contribute equally (i.e., they make a payment of 2Q) How long will it now take to finish paying off the loan? Answer to the nearest month rounded up.
- 3 11. If $\frac{3}{4}$ of the boys in a junior class use a backpack, and $\frac{2}{5}$ are not in full uniform, find the probability that a boy chosen by lot would be in uniform and using a backpack.

- 12. From 5 boys and 7 girls, two students will be chosen at random to work together on a project.
- (a) Which of the following probability trees could be used to determine the probability of choosing a boy and a girl?

- (b) Briefly explain why you rejected the other three
- (i) I rejected ... because ...


2

- (ii) I rejected . . because . .
- (iii) I rejected ... because ...
- [4] 13. According to post office regulations, the sum of the dimensions (length, width, and height) of a parcel must not exceed two metres. What is the maximum allowed volume of a parcel with a length twice its width?
- [5] 14. Find the stationary points on the graph of the function:

$$f(x) = (x-1)^2(x+1)$$

For each point, determine whether it is a maximum, a minimum, or a point of inflexion. Sketch the curve, showing the points where it cuts the axes and the stationary points.

4 15. The figure below shows the graph of the gradient function p'(x). Draw a neat sketch of a possible primitive function p(x).

 $\boxed{5}$ 16. Given that $\frac{d^2x}{dt^2} = 12t - 2$, that $\frac{dx}{dt} = 0$ when t = 0 and that x = 4 when t = 1, find x when t = 5.

11MaA Test #3 29 June 2004 solutions

3 1. (a)
$$\cdots + 10 + 8 + \cdots + (20 - 2n) + \cdots$$

(b)
$$\cdots + 64 - 32 + \cdots + (-1)^{n-1}2^{11-n} + \cdots$$

3 (c)
$$\cdots + 4\sqrt{3} + 5\sqrt{3} + \cdots + n\sqrt{3} + \cdots$$

3 (d)
$$\cdots + 16 + 25 + \cdots + (n-2)^2 + \cdots$$

1 2. (a)
$$\frac{1}{4}$$
.

1 (b)
$$\frac{1}{2}$$

[3] (b)
$$U_n = a + (n-1)d$$
,
 $43 = 5 + 2(n-1)$,
 $38 = 2n - 2$,
 $2n = 40$,
 $n = 20$, *i.e.* there are 20 terms.

[3] (c)
$$a = 2$$
,
 $d = 5 - 2$,
 $= 3$,
 $S_{20} = 10(4 + 19 \times 3)$,
 $= 610$.

$$\begin{array}{c|cccc}
\hline{1} & 4. & (a) & \frac{62}{100} = \frac{31}{50}. \\
\hline
1 & (b) & \frac{100 - 62}{100} = \frac{19}{50}.
\end{array}$$

5.
$$y$$

In $\triangle ABO$, $M = (\frac{a}{2}, \frac{b}{2})$
 $\overline{MO} = \sqrt{\frac{a^2 + b^2}{4}}$,

 $= \frac{\sqrt{a^2 + b^2}}{2}$
 $\overline{MA} = \sqrt{(a - \frac{a}{2})^2 + \frac{b^2}{4}}$,

 $= \frac{\sqrt{a^2 + b^2}}{2}$.

 $\overline{MB} = \sqrt{\frac{a^2 + b^2}{4} + (\frac{b}{2} - b)^2}$,

 $= \frac{\sqrt{a^2 + b^2}}{2}$.

$$\therefore \overline{MO} = \overline{MA} = \overline{MB}.$$

3 6. (a)
$$\sum_{n=4}^{14} (8-n) = 4+3+2+1+0-1-2-3-4-5-6,$$
$$= -11.$$

(a)
$$\sum_{n=1}^{7} (-5)^{n-1} = 1 - 5 + 25 - 125 + 625 - 3125 + 15625$$
$$= 13021.$$
Or
$$\sum_{n=1}^{7} (-5)^{n-1} = \frac{1 \times ((-5^7 - 1))}{-5 - 1},$$
$$= 13021.$$

3 7.
$$y = x^3 - 8x^2 + 6x - 3$$
,
 $y' = 3x^2 - 16x + 6$,
 $y'' = 6x - 16$.
Concave upwards when $6x - 16 > 0$, *i.e.* $x > \frac{8}{3}$

- 1 8. (a) $\frac{1}{5}$.
- (b) $\frac{3}{5}$.
- 1 (c) $\frac{2}{5}$.
- 1 (d) $\frac{4}{5}$.
- (e) 0. Note that $2+3+4+5+6=20 \neq 3n, n \in \mathbb{Z}$.

[3] 9. (a)
$$5n - 23 < 0$$
,
 $5n < 23$,
 $n < 4\frac{3}{5}$.
∴ The first 4 terms are negative

(b)
$$a = 2$$
, $r = 3$. $728 = \frac{2(3^n - 1)}{3 - 1}$, $3^n = 729$, $n = 6$, i.e. 6 terms are needed.

[2] (c) (i)
$$\frac{2}{3} = \frac{4}{1-r}$$
, $S_{\infty} = \frac{a}{1-r}$, $|r| < 1$
 $12 = 2-2r$, $r = -5$.
 $|-5| > 1$, \therefore No, not possible.

[2] (ii)
$$4 = \frac{2}{3} \times \frac{1}{1-r},$$

$$12 - 12r = 2,$$

$$-12r = -10,$$

$$r = \frac{5}{6}.$$

$$< 1, \therefore \text{ Yes, possible.}$$

[1] 10. (a) Owing after 1 month =
$$PR - Q$$
,
= \$450 000 $\left(1 + \frac{6 \cdot 9}{1200}\right) - Q$,
= \$450 000 × 1 · 00575 - Q ,
= \$452 587 · 50 - Q .

[4] (b) Owing after 2 months =
$$(PR - Q)R - Q$$
, Owing after 3 months = $((PR - Q)R - Q)R - Q$, = $PR^3 - QR^2 - QR - Q$, = $PR^3 - Q(R^2 + R + 1)$, Owing after n months = $PR^n - \frac{Q(R^n - 1)}{R - 1}$.

So, after 30 years, $0 = PR^{360} - \frac{Q(R^{360} - 1)}{R - 1}$.

i.e. $Q = \frac{PR^{360}(R - 1)}{R^{360} - 1}$, = $\frac{450000 \times 1.00575^{360} \times 0.00575}{1.00575^{360} - 1}$, = $\frac{$2963.70}{1.00575^{360} - 1}$, = $\frac{$2963.70}{1.00575^{360} - 1}$, to the nearest cent.)

(c) Owing after 10 years = \$450 000 × 1.00575¹²⁰ -
$$\frac{$2\,963 \cdot 70(1.00575^{120} - 1)}{0.00575}$$
,

= \$385 242.50 (or \$385 242.60 if working with whole cents).

For the residue, when paid off,

 $PR^n(R-1) = 2Q(R^n-1)$,

 $R^n(PR-P) = R^n(2Q) - 2Q$,

 $R^n = \frac{-2Q}{PR-P-2Q}$,

 $n \log R = \log \frac{2Q}{2Q+P-PR}$,

$$n = \frac{\log \left(\frac{2 \times 2963 \cdot 7}{2 \times 2963 \cdot 7 + 385 242 \cdot 6 - 385 242 \cdot 6 \times 1.00575}\right)}{\log 1.00575}$$
,

= $\frac{1.596710968}{1.00575}$,

= 81.61563957 (by calculator)

∴ It will take 82 more months (or a further 6 years, 10 months).

3 11.
$$P(\text{Uniform} \cap \text{backpack}) = \frac{3}{4} \times \frac{3}{5},$$

= $\frac{9}{20}$.

- 1 12. (a) D
- (b) I rejected A as both numerator and denominator remained unchanged after the first selection, i.e., selection with replacement which is absurd in this case.
- (c) I rejected B because although the numerator was replaced correctly, the denomina-2 tor remained unchanged.
- (d) I replaced C because the wrong numerator was reduced after each selection (boy 2 for girl, girl for boy).

$$3x + h = 2, \text{ (considering the maximum case)}$$

$$h = 2 - 3x.$$

$$\therefore \text{ Volume, } V = 2x^2(2 - 3x),$$

$$= 4x^2 - 6x^3.$$

$$\text{Now, } \frac{dV}{dx} = 8x - 18x^2,$$

$$= 0 \text{ when } x = 0 \frac{4}{9} \text{ m.}$$

$$\frac{d^2V}{dx^2} = 8 - 36x,$$

$$> 0 \text{ when } x = 0 \text{ m,}$$

$$< 0 \text{ when } x = \frac{4}{9} \text{ m.}$$

$$\text{Maximum volume} = 2\left(\frac{4}{9}\right)^2 \left(2 - 3\left(\frac{4}{9}\right)\right) \text{ m}^3,$$

$$= \frac{64}{243} \text{ m}^3,$$

$$= 0.2634 \text{ m}^3 \text{ nearest cm}^3.$$

$$f'(x) = (x-1)^2(x+1).$$

$$f'(x) = (x-1)^2 + 2(x-1)(x+1),$$

$$= (x-1)(2x+2+x-1),$$

$$= (x-1)(3x+1).$$

$$f''(x) = 3x+1+3(x-1),$$

$$= 6x-2.$$
Now,
$$f'(x) = 0 \text{ when } x = 1, -\frac{1}{3},$$

$$f''(1) = 4,$$

$$f''(-\frac{1}{3}) = -4,$$

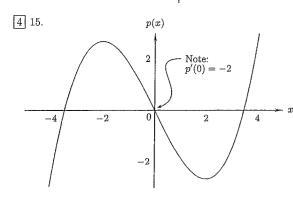
$$f''(x) = 0 \text{ when } x = \frac{1}{3}.$$

$$\therefore \text{ Minimum at } (1,0),$$

$$\text{Maximum at } (-\frac{1}{3}, \frac{32}{27}),$$

$$(\text{also note an inflexion at } (\frac{1}{3}, \frac{16}{27})),$$

$$\text{When } x = 0, \ f(0) = 1.$$


$$f(x)$$

$$-\frac{1}{2} \text{Maximum}$$

$$y \text{-intercept}$$
Inflexion

Inflexion

Inflexion

Also note that the vertical position of the x-axis is not important. Moving it up or down corresponds to different values of the constant, C, in the integration. The slope at p(0) is x important and can be read off the original graph.

$$\frac{d^2x}{dt^2} = 12t - 2,$$

$$\frac{dx}{dt} = 6t^2 - 2t + c,$$

$$0 = 0 + c \text{ (when } t = 0).$$

$$\therefore \frac{dx}{dt} = 6t^2 - 2t.$$

$$x = 2t^3 - t^2 + k,$$

$$4 = 2 - 1 + k \text{ (when } t = 1).$$

$$\therefore x = 2t^3 - t^2 + 3.$$
Now, when $t = 5$,
$$x = 2 \times 125 - 25 + 3,$$

$$= 228.$$