Student name/number:	

SOUTH SYDNEY HIGH SCHOOL

2001 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on last page
- All necessary working should be shown in every question

Total marks (84)

- Attempt Questions 1 − 7
- All questions are of equal value

Please note that this is a Trial paper only and cannot in any way guarantee the format or the content of the Higher School Certificate Examination.

S.S.H.S. — Mathematics Extension 1 - Trial HSC Examination 2001	
Question 1 (12 marks) Start a NEW page.	Marks
(a) Find $\int \frac{dx}{\sqrt{9-4x^2}}$	2
(b) Differentiate $y = 3e^{\tan 3x}$	2
(c) Find all possible values of k if the lines $2x + y + 3 = 0$ and $kx - y + 4 = 0$ intersect at 45° .	2
(d) The point $C(10, -7)$ divides the interval AB externally in the ratio 3:5. Find the coordinates of B if A has coordinates $(4, -1)$.	2
(e) Write down the equation of the horizontal asymptote of $f(x) = \frac{3x}{x-7}$	1
(f) Solve $\frac{3}{x+1} \ge 4$	3

Question 2 (12 marks)

Start a NEW page.

Marks

- (a) (i) In how many ways can the letters of the word **NONAGON** be arranged?
- 3

- (ii) Find the probability that the N's are together?
- (iii) Find the probability that the vowels are together?

(b)

3

In the diagram P, Q and R are points on a circle centre O, with PR being a diameter. PT is the perpendicular from P to the tangent at Q.

Copy the diagram into your Writing Booklet

Prove that PQ bisects $\angle RPT$.

(c) Given that one root of $x^3 - 5x^2 - x + k + 6 = 0$ is 3, Find

3

- (i) the value of k
- (ii) the sum and the product of the other two roots.
- (d) Prove by induction that $5^n + 3$ is divisible by 4 for any integer $n \ge 1$.

3

Question 3 (12 marks) Start a NEW page.

(a) Evaluate
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \cos^{-1}\left(-\frac{1}{2}\right)$$

Marks

(b) Out of 8 letters of which some are **E**'s and others are different, 6720 different eight-letter words can be formed. How many **E**'s are there?

eight-letter words can be formed. How many E's are there?

A parabola is defined by the parametric equations

$$x=2t, y=t^2.$$

- (i) Find the equations of the tangents at the points $P(2p, p^2)$ and $Q(2q, q^2)$.
- (ii) Show that the point of the intersection of the two tangents is at R(p+q,pq).
- (iii) Show that the equation of the chord PQ is (p+q)x-2y-2pq=0.
- (iv) If the points P and Q move on the parabola in such a way that pq remains constant and equal to -2, prove that the chord PQ always passes through the point A(0,2).
- (v) Show that RN which passes through O is perpendicular to PQ.

Question 4 (12 marks)

Start a NEW page.

Marks

Using the substitution u = 1 - 2x, find (a)

$$\int \! 4x \sqrt{1-2x} \ dx$$

The expression $x^2 + 9x + 4$ has the same remainder whether divided (b) by x - a or x + b, where $a \ne -b$. Find the value of a - b.

2

(c)

The diagram above shows a regular n-sided polygon inscribed in a circle of radius runits. Each side of the polygon subtends an angle of α radians at the centre of the circle.

- Show that the perimeter of the polygon is $2nr \sin \frac{\pi}{n}$ 2 (i)

Show that the area of the polygon is $\frac{1}{2}nr^2\sin\frac{2\pi}{n}$. (ii)

2

1

Also show that the corresponding area of the circumscribed polygon is (iii)

- $nr^2 \tan \frac{\pi}{n}$.
- Deduce the area of the circle by using the inequality, (iv)

2

Area of inscribed polygon < Area of circle < Area of circumscribed polygon

Question 5 (12 marks)	Start a NEW page.	Marks
a) (i) Find the coeffici	ent of x^7 in the expansion of $\left(px^2 + \frac{1}{qx}\right)^{11}$.	3
(ii) If this coefficien expansion of	It is equal to the coefficient of x^{-7} in the $px - \frac{1}{qx^2} \Big)^{11}$, prove that $pq = 1$.	3
(b) (i) By expanding c $\cos 4\theta =$	$\cos(2\theta + 2\theta)$ or otherwise, show that $-1 - 8\sin^2\theta + 8\sin^4\theta$.	3
(ii) Hence evaluate	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin^2 \theta - \sin^4 \theta) \ d\theta$	3

Ouestion 6 (12 marks)

Start a NEW page.

Marks

(i) By inserting n arithmetic means between n and n+1, show that the arithmetic (a) sequence is

2

1

$$n, n+\frac{1}{n+1}, n+\frac{1}{n+2}, ..., n+\frac{n+1}{n+1}$$

(ii) Hence show
$$n + \left(n + \frac{1}{n+1}\right) + \dots + \left(n+1\right) = \frac{(n+2)(2n+1)}{2}$$

A particle is projected vertically upwards from a point 30 metres above the ground. (b) The path of the particle is given by

$$h = 6\left(5 + 9t - 3t^2\right)$$

where h is the height in metres above the ground at time t seconds after projection. Find:

the time taken to reach the greatest height. (i)

2

the greatest height reached. (ii)

1

the magnitude and direction of the velocity after $2\frac{1}{2}$ seconds. (iii)

2

the magnitude and direction of the acceleration.

1

The present temperature of a star is $8500^{\circ}C$ and it is losing heat continuously (c) in a way that in t million years, its temperature T^0C may be calculated from the equation

$$T = T_0 e^{-0.06t}$$
.

Find the temperature of the star in 4 million years (to the nearest degree). (i)

1

After how many years from now will the temperature of the star be halved. (ii)

2

Question 7 (12 marks)

Start a NEW page.

Marks

(a)

The diagram above shows the shaded area between the curves $y = \sin^{-1} x$, $y = \cos^{-1} x$ and the y-axis.

$$y = \sin^{-1} x$$
, $y = \cos^{-1} x$ and the y data.
(i) Show that the point of intersection P is $\left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}\right)$.

3

(ii) Hence, show that the shaded area is equal to
$$(2-\sqrt{2})$$
 sq. units.

1

(iii) Show that the volume of solid generated by rotating this area about the y-axis is given by
$$\frac{\pi}{2} \left[\frac{\pi}{2} - 1 \right]$$
 cubic units.

3

(b) The rate at which a metal block cools in air is assumed to be proportional to the difference between its temperature *T* and the constant temperature *A* of the surrounding air. This can be expressed by the differential equation;

$$\frac{dT}{dt} = k(T-A)$$

where t is the time in hours and k is a constant.

(i) Show that $T = A + Be^{kt}$ is a solution to the differential equation, given that B is a constant.

2

3

(ii) A metal block which has been heated to 80°C cools to 40°C in two hours. If the air temperature around the metal block is 20°C, find the temperature of the metal block after one further hour has elapsed. Give your answer correct to the nearest degree.

End of paper

S.S.H.S. - Mathematics Extension 1 - Solutions - Trial HSC 2001

Question 1 (12 marks)

(a)
$$\int \frac{dx}{\sqrt{9-4x^2}} = \int \frac{dx}{2\sqrt{\frac{9}{4}-x^2}} \checkmark$$
$$= \frac{1}{2} \int \frac{dx}{\sqrt{\frac{9}{4}-x^2}}$$
$$= \frac{1}{2} \sin^{-1} \frac{2x}{3} + C \checkmark$$

(b)
$$y = 3e^{\tan 3x}$$

$$\frac{dy}{dx} = 3e^{\tan 3x} \times 3\sec^2 3x \checkmark \checkmark$$

$$= 9e^{\tan 3x} \sec^2 3x$$

c)
$$\tan \theta = \frac{\left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|}{1 + m_1 m_2} \quad \theta = 45^{\circ}, m_1 = k, m_2 = -2$$

$$\tan 45^{\circ} = \frac{\left| \frac{k+2}{1-2k} \right|}{1-2k} \quad \checkmark$$

$$\therefore 1 - 2k = k+2 \quad \text{or} \quad -(1-2k) = k+2$$

$$-1 = 3k \quad -1 + 2k = k+2$$

$$-\frac{1}{3} = k \quad k = 3$$

 \therefore possible values of $k = -\frac{1}{3}$ or 3 \checkmark

(d)
$$A(4, -1)$$
, $B(x, y)$, $C(10, -7)$ ratio = -3: 5

$$P(X, Y) = \left(\frac{nx_1 + mx_2}{m + n}, \frac{ny_1 + my_2}{m + n}\right)$$
For x ;
$$10 = \frac{5 \times 4 + (-3) \times x}{-3 + 5}$$

$$20 = 20 - 3x$$

$$x = 0 \quad \checkmark$$
For y ;
$$-7 = \frac{5 \times (-1) + (-3) \times y}{-3 + 5}$$

$$-14 = -5 - 3y$$

$$3y = 9$$

$$y = 3$$

$$\therefore B(0, 3) \checkmark$$

Solutions

(e)

horizontal asymptote $y = \lim_{x \to \infty} f(x)$

$$\therefore y = \lim_{x \to \infty} \frac{3x}{x - 7}$$

$$= \lim_{x \to \infty} \frac{3}{1 - \frac{7}{x}}$$

$$= \frac{3}{1 - 0}$$

 \therefore horizontal asymptote is y = 3

(f)
$$\frac{3}{x+1} \ge 4, \quad \text{Note } x \ne -1$$

$$3(x+1) \ge 4(x+1)^2 \checkmark$$

$$3x+3 \ge 4x^2 + 8x + 4$$

$$0 \ge 4x^2 + 5x + 1$$

$$0 \ge (4x+1)(x+1) \text{ but } x \ne -1 \checkmark$$

$$\therefore -1 < x \le -\frac{1}{4} \checkmark$$

iestion 2 (12 marks)

$$\frac{7!}{3!2!} = 420 \checkmark$$

(ii)
$$\frac{5!}{2!} \div \frac{7!}{3!2!} = \frac{1}{7} \checkmark$$

(iii)
$$\frac{\frac{5!}{3!} \times \frac{3!}{2!}}{\frac{7!}{2!3!}} = \frac{1}{7} \checkmark$$

(b)

Join PQ, QO and QR.

Let
$$\angle QPR = \alpha$$

Let
$$\angle QPR = \alpha$$

 $\angle PQR = 90^{\circ}$ (angle in a semi-circle) \checkmark
 $\therefore \angle QRP = 180^{\circ} - 90^{\circ} - \alpha$ (angle sum of $\triangle PQR$)
 $= 90^{\circ} - \alpha$ (angle in alternate segment)

$$= 90^{\circ} - \alpha$$

$$\angle QRP = \angle TQP \qquad \text{(angle in alternate segment)} \checkmark$$

$$\therefore \angle TQP = 90^{\circ} - \alpha$$

$$\therefore \angle TQP = 90^{\circ} - \alpha$$

$$\therefore \angle QPT = 180^{\circ} - 90^{\circ} - (90^{\circ} - \alpha)$$

(angle sum of $\triangle QPT$)

$$\therefore \angle QPT = \alpha = \angle QPR$$

Hence PQ bisects $\angle RPT$

(c) (i) x = 3 satisfies the equation $3^3 - 5(3)^2 - 3 + k + 6 = 0$

$$-5(3)^2 - 3 + k + 6 = 0$$

$$\therefore k = 15$$

(ii) eqn becomes $x^3 - 5x^2 - x + 21 = 0$ sum of roots; $\alpha + \beta + \gamma = -\frac{b}{a}$

$$\alpha+\beta+3=5$$

$$\alpha+\beta=2$$

product of roots; $\alpha\beta\gamma = -\frac{d}{a}$

$$3\alpha\beta = -21$$

$$\alpha\beta = -7 \checkmark$$

: the sum of the other two roots is 2

 \therefore the product of the other two roots is -7

Prove $5^n + 3$ is divisible by 4 (d)

step 1: Prove true for n = 1

 $5^1 + 3 = 8$ which is divisible by 4

$$\therefore \text{ true for } n = 1. \checkmark$$

Step 2 : Assume true for n = k. i.e. $5^k + 3 = 4p$ for some integer p

Step 3: Prove true for
$$n = k + 1$$
.

$$5^{k+1} + 3 = 5^{k+1} + 15 - 12$$

$$= 5(5^{n} + 3) - 12 \checkmark$$

$$= 5 \times 4p - 12$$

$$= 4(5p - 3)$$
With in divisible

which is divisible by 4 🗸

 \therefore true for n = k + 1.

Hence if it is true for n = k, then it is true for n = k + 1. We have proved that it is true for n = 1, so it must be true for n= 2. If it is true for n = 2, then it must be true for n = 3, and so on. Hence it is true for all $n \ge 1$.

Question 3 (12 marks)

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \cos^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{4} + \left(\pi - \frac{\pi}{3}\right) \checkmark$$
$$= \frac{\pi}{4} + \frac{2\pi}{3} = \frac{11\pi}{12} \checkmark$$

(b) Let the number of e's be n.

$$\therefore \frac{8!}{n!} = 6720 \checkmark$$

$$\therefore n! = \frac{8!}{6720} = 6$$

$$\therefore n = 3 \checkmark$$

(c) (i)
$$\frac{dy}{dx} = \frac{dy}{dp} \times \frac{dp}{dx}$$

= $2p \times \frac{1}{2} = p \checkmark$

 \therefore the equation of the tangent at P is

$$y-p^2 = p(x-2p)$$
$$y-p^2 = px-2p^2$$

$$\therefore px - y - p^2 = 0 \checkmark$$

 \therefore similarly, the equation of the tangent at Q is

$$\therefore qx - y - q^2 = 0$$

(ii) Solving simultaneously the equations of tangents at *P* and *O*

$$px - y - p^2 = 0$$
(1)
 $qx - y - q^2 = 0$ (2)

(1) - (2) gives

$$(p-q)x-(p^2-q^2)=0$$

$$x = \frac{(p+q)(p-q)}{(p-q)} = p+q \checkmark$$

Substituting into (1) gives

$$y = p(p+q) - p^2 = pq \checkmark$$

(iii) Gradient of chord PQ is

$$m_{PQ} = \frac{p^2 - q^2}{2p - 2q} = \frac{(p+q)(p - q)}{2(p - q)}$$
$$= \frac{p+q}{2} \checkmark$$

...the equation of the chord PQ is

$$y-p^2 = \frac{p+q}{2}(x-2p)$$

$$2(y-p^2) = (p+q)(x-2p)$$

$$2y-2p^2 = (p+q)x-2p^2-2pq \checkmark$$

$$\therefore (p+q)x-2y-2pq = 0 \text{ as required.}$$

(iv) If pq = -2 then (p+q)x-2y+4=0At x = 0, 2y = 4 $\therefore y = 2 \checkmark$ $\therefore \text{ the coordinates of } A \text{ is } (0,2) \text{ as required.}$

(v) The gradient of RN is

$$m_{RN} = \frac{pq - 0}{(p+q) - 0} = \frac{-2}{p+q}$$

Since
$$m_{PQ} \times m_{RN} = \frac{p+q}{2} \times \frac{-2}{p+q} = -1 \checkmark$$

 $\therefore PQ$ is perpendicular to RN.

Question 4 (12 marks)

(a)
$$u = 1 - 2x$$
 $du = -2dx$
 $2x = 1 - u$ $dx = -\frac{du}{2} \checkmark$

$$\int 4x\sqrt{1 - 2x} \, dx = \int 2(1 - u)\sqrt{u} \, \frac{du}{-2}$$

$$= -\int (u^{\frac{1}{2}} - u^{\frac{3}{2}}) du \checkmark$$

$$= -\left(\frac{2}{3}u^{\frac{3}{2}} - \frac{2}{5}u^{\frac{5}{2}}\right) + C$$

$$= \frac{2}{5}(1 - 2x)^{\frac{5}{2}} - \frac{2}{3}(1 - 2x)^{\frac{3}{2}} + C \checkmark$$

(c) (i) Since
$$\alpha = \frac{2\pi}{n}$$

$$\sin\left(\frac{\alpha}{2}\right) = \frac{x}{r} \quad \therefore \ x = r\sin\left(\frac{\pi}{n}\right) \checkmark$$

Each side of the polygon = $2r \sin\left(\frac{\pi}{n}\right)$

Perimeter of the polygon is

$$n \times 2r \sin\left(\frac{\pi}{n}\right) = 2nr \sin\left(\frac{\pi}{n}\right) \checkmark$$

(ii) Area of each triangle is $\frac{1}{2}r^2 \sin \alpha$

$$=\frac{1}{2}r^2\sin\left(\frac{2\pi}{n}\right)$$

Area of the polygon is $n \times$ Area of each triangle

$$= \frac{1}{2}nr^2 \sin\left(\frac{2\pi}{n}\right) \text{ sq. units.} \quad \checkmark$$

(iii) For the circumscribed polygon

$$\tan\frac{\alpha}{2} = \frac{y}{r}$$
$$y = r \tan\frac{\pi}{r} \checkmark$$

Area of the each triangle is

$$\frac{1}{2}bh = \frac{1}{2} \times 2r \tan \frac{\pi}{n} \times r = r^2 \tan \frac{\pi}{n} \checkmark$$
Area of the circumscribed polygon is

$$n \times r^2 \tan \frac{\pi}{n}$$
 as required.

(iv) Using the inequality

 $A_{
m insribed\ polygon} < A_{
m circle} < A_{
m circumscribed\ polygon}$

$$\frac{1}{2}nr^2\sin\frac{2\pi}{n} < A_{\text{circle}} < nr^2\tan\frac{\pi}{n}$$

taking the limit as n approaches infinity

$$\lim_{n\to\infty} \frac{1}{2} nr^2 \sin \frac{2\pi}{n} = A_{\text{circle}} = \lim_{n\to\infty} nr^2 \tan \frac{\pi}{n}$$

$$\lim_{n \to \infty} \frac{1}{2} r^2 \times \frac{\sin \frac{2\pi}{n}}{\frac{1}{n}} = A_{\text{circle}} = \lim_{n \to \infty} r^2 \frac{\tan \frac{\pi}{n}}{\frac{1}{n}} \checkmark$$

But note that $n \to \infty$; then $\frac{1}{n} \to 0$

Let
$$h = \frac{1}{n}$$
, $\therefore \lim_{h \to 0} \frac{1}{2} r^2 \frac{\sin 2\pi h}{h}$

$$= \lim_{h \to 0} \frac{1}{2} r^2 \times \frac{\sin 2\pi h}{2\pi h} \times 2\pi \checkmark$$
(Note: $\lim_{h \to 0} \frac{\sin 2\pi h}{2\pi h} = 1$)

$$= \frac{1}{2} r^2 \times 1 \times 2\pi = \pi r^2$$

Hence, the area of the circle is πr^2 .

Or alternately use,

$$\lim_{h \to 0} r^2 \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}} \times \pi = \pi r^2 . \checkmark \checkmark$$

Question 5 (12 marks)

(a)(i)
$$T_{r+1} = {}^{11}C_r \left(px^2\right)^{11-r} \left(\frac{1}{qx}\right)^r = Kx^r$$

where K is a constant.

$$= {}^{11}C_r p^{11-r} \times \frac{1}{q^r} \left(x^{22-2r}.x^{-r}\right) = Kx^7 \checkmark$$

Equating the powers of x gives

$$22 - 2r - r = 7$$

$$\therefore 3r = 15 \Rightarrow r = 5 \checkmark$$

$$T_6 = {}^{11} C_5 (px^2)^6 \left(\frac{1}{qx}\right)^5$$
$$= {}^{11} C_5 p^6 q^{-5} x^7$$

The coefficient is ${}^{11}C_5p^6q^{-5} = 462p^6q^{-5}$ \checkmark

(ii) For the expansion
$$\left(px - \frac{1}{qx^2} \right)^{11}$$

$$T_{s+1} = {}^{11} C_s \left(px \right)^{11-s} \left(-\frac{1}{qx^2} \right)^s = Kx^{-7}$$

where K is a constant.

Similarly, comparing powers of x gives

$$11-s-2s=-7$$

$$\therefore 3s=18 \Rightarrow s=6 \checkmark$$

Since the coefficients are equal, then

$${}^{11}C_5 p^6 q^{-5} = {}^{11}C_6 p^5 q^{-6}$$

$${}^{6}q^{-5} = {}^{11}C$$

$$\therefore \frac{p^{6}q^{-5}}{p^{5}q^{-6}} = \frac{{}^{11}C_{6}}{{}^{11}C_{5}}$$
$$\therefore \frac{p}{q^{-1}} = 1 \left(:: {}^{n}C_{r} = {}^{n}C_{r-1} \right) \checkmark$$

 $\therefore pq = 1$ as required.

o) (i)
$$\cos(2\theta + 2\theta) = \cos^2 2\theta - \sin^2 2\theta$$

 $= 1 - \sin^2 2\theta - \sin^2 2\theta$
 $= 1 - 2\sin^2 2\theta \checkmark$
 $= 1 - 2(2\sin\theta\cos\theta)^2 \checkmark$
 $= 1 - 2(4\sin^2\theta(1 - \sin^2\theta))$
 $= 1 - 2(4\sin^2\theta - 4\sin^4\theta) \checkmark$
 $= 1 - 8\sin^2\theta + 8\sin^4\theta$ as required.

(ii)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(1 - 8\sin^2\theta + 8\sin^4\theta \right) d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 4\theta d\theta$$

$$\therefore 8 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\sin^2 \theta - \sin^4 \theta \right) d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(1 - \cos 4\theta \right) d\theta \checkmark$$

$$\therefore \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\sin^2 \theta - \sin^4 \theta \right) d\theta$$

$$= \frac{1}{8} \left[\theta - \frac{\sin 4\theta}{4} \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \checkmark$$

$$= \frac{1}{8} \left[\left(\frac{\pi}{2} - \frac{\sin 2\pi}{4} \right) - \left(\frac{\pi}{4} - \frac{\sin \pi}{4} \right) \right]$$

$$= \frac{1}{8} \left[\left(\frac{\pi}{2} - 0 \right) - \left(\frac{\pi}{4} - 0 \right) \right]$$

$$= \frac{1}{8} \left[\frac{\pi}{4} \right] = \frac{\pi}{32} . \checkmark$$

Question 6 (12 marks)

(a) (i) Let
$$a = n$$
 and $l = T_N = n+1$
where $N = n+2$

$$T_N = n + ((n+2)-1)d = n+1$$

$$(n+1)d = 1$$

$$\therefore d = \frac{1}{n+1} \checkmark$$

Hence, the arithmetic sequence is

$$n, n + \frac{1}{n+1}, n + \frac{2}{n+1}, \dots, n + \frac{n+1}{n+1} \checkmark$$

(ii)
$$n + \left(n + \frac{1}{n+1}\right) + \left(n + \frac{2}{n+1}\right) + \dots + \left(n+1\right)$$

$$(\text{Using } S_N = \frac{N}{2}(a+l)) \checkmark$$

$$= \frac{n+2}{2}(n+(n+1))$$

$$= \frac{(n+2)(2n+1)}{2} \checkmark$$

(b)
$$h = 6(5+9t-3t^2)$$

Greatest height reached when $\frac{dh}{dt} = 0$ \checkmark

(i)
$$\frac{dh}{dt} = 54 - 36t$$

$$0 = 9 - 6t$$

$$\therefore t = 1\frac{1}{2} \text{ sec.} \checkmark$$

(i) Greatest height when
$$t = 1\frac{1}{2}$$
 s
$$h = 70\frac{1}{2} \text{ m.} \checkmark$$

(ii)
$$\frac{dh}{dt} = v$$

$$\therefore v = 54 - 36t \checkmark$$
When $t = 2\frac{1}{2}$ sec, $v = -36$ m/s. \checkmark

(iii)
$$a = \frac{dv}{dt} = -36 \text{ m/s}^2 \checkmark$$

(c) i)
$$T = T_0 e^{-0.06t}$$

 $T = 8500 e^{-0.06 \times 4}$
 $T = 6686^{\circ} C \checkmark$

(ii)
$$T = T_0 e^{-0.06t}$$

 $4250 = 8500 e^{-0.06t}$
 $\frac{1}{2} = e^{-0.06t} \checkmark$
 $\ln\left(\frac{1}{2}\right) = -0.06t$
 $t = 11.55 \text{ million years.} \checkmark$

Question 7 (12 marks)

(a) (i) Solving
$$\sin y = x$$
 and $\cos y = x$
 $\sin y = \cos y$
 $\tan y = 1$
 $\therefore y = \tan^{-1} 1 = \frac{\pi}{4}$

$$\therefore x = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

The point of intersection is $\left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}\right)$.

(ii) The shaded area is equal to

$$\int_{0}^{\frac{\pi}{4}} \sin y \, dy + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos y \, dy \checkmark$$

$$= \left[-\cos y \right]_{0}^{\frac{\pi}{4}} + \left[\sin y \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \left[\left(-\cos \frac{\pi}{4} \right) - \left(-\cos 0 \right) \right] + \left[\sin \frac{\pi}{2} - \sin \frac{\pi}{4} \right] \checkmark$$

$$= -\frac{1}{\sqrt{2}} + 1 + 1 - \frac{1}{\sqrt{2}}$$

$$= 2 - \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \checkmark$$

$$= \left(2 - \sqrt{2} \right) \text{ sq. units. as required.}$$

 \sim (iii) The volume of solid of revolution about the y-axis is given by

$$V_{y} = \pi \int_{0}^{\frac{\pi}{4}} \sin^{2} y \, dy + \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^{2} y \, dy \checkmark$$

$$= \pi \int_{0}^{\frac{\pi}{4}} \frac{1}{2} (1 - \cos 2y) \, dy + \pi \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} (\cos 2y + 1)$$

$$= \frac{\pi}{2} \left[\left(y - \frac{\sin 2y}{2} \right) \right]_{0}^{\frac{\pi}{4}} + \frac{\pi}{2} \left[\frac{\sin 2y}{2} + y \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} \checkmark$$

$$= \frac{\pi}{2} \left[\left(\frac{\pi}{4} - \frac{\sin \frac{\pi}{2}}{2} \right) - 0 \right] + \frac{\pi}{2} \left[\left(\frac{\sin \pi}{2} + \frac{\pi}{2} \right) - \left(\frac{\sin \frac{\pi}{2}}{2} + \frac{\pi}{4} \right) \right]$$

$$= \frac{\pi}{2} \left[\frac{\pi}{4} - \frac{1}{2} + \frac{\pi}{2} - \frac{1}{2} - \frac{\pi}{4} \right] \checkmark$$

$$= \frac{\pi}{2} \left[\frac{\pi}{2} - 1 \right] \text{ cubic units.}$$

(b)(i) given
$$T = A + Be^{kt}$$

differentiating gives $\frac{dT}{dt} = kBe^{kt}$ \checkmark
but $\frac{dT}{dt} = k(T - A)$
 $= k(A + Be^{kt} - A)$ \checkmark
 $= kBe^{kt}$
 $\therefore T = A + Be^{kt}$ is a solution

(ii) when
$$t = 0$$
, $A = 20^{\circ}\text{C}$, $T = 80^{\circ}\text{C}$
 $\therefore 80 = 20 + Be^{0}$
 $B = 60 \checkmark$
 $\therefore T = 20 + 60e^{kt}$
when $t = 2$, $T = 40^{\circ}\text{C}$
 $\therefore 40 = 20 + 60e^{2k}$
 $20 = 60e^{2k}$
 $\frac{1}{3} = e^{2k}$
 $\therefore k = \frac{1}{2}\ln\frac{1}{3} \checkmark$
when $t = 3$,
 $T = 20 + 60e^{(3 \times \frac{1}{2}\ln\frac{1}{3})}$
 $T = 31.547...$
 $\therefore T = 32^{\circ}\text{C} \checkmark$