SOUTH SYDNEY HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1996

MATHEMATICS

3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time Allowed - Two hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- Write your student Name / Number on every page of the question paper and your answer sheets.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied.
- Board approved calculators may be used.
- The answers to the seven questions are to be handed in separately clearly marked Question 1, Question 2, etc..
- The question paper must be handed to the supervisor at the end of the examination.

Question 1: (Start a new page)

Marks

a) The letters of the word **AROUND** are written at random on the circumference of a circle.

3

- i) How many different permutations are possible?
- ii) What is the probability that the three vowels are together?

b) Solve
$$\frac{1-x}{1+x} \le 1$$

3

c) For the polynomial $P(x) = x^4 - 7x^3 + 12x^2 + 4x - 16$,

1

- i) Show that the remainder is zero when P(x) is divided by x 2
- ii) Given x = 2 is a double root of P(x), find the factors of P(x)

d) Find
$$\int_0^{\pi} (2 \sin x - \sin 2x) dx$$

2

Question 2: (Start a new page)

a) i) Draw a neat sketch of the curve $y = 3 \sin 2x$ for $0 \le x \le \pi$

5

ii) The area between the curve $y = 3\sin 2x$, x = 0 and $x = \pi$ and the x-axis is rotated about the x-axis. Find the volume of the solid generated. (Leave your answer in terms of π)

b)

 $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are points on the parabola $x^2 = 4ay$. If PQ is a normal at P, show that $p^2 + pq + 2 = 0$.

3

c) i) Write down the expansion for $tan(\alpha - \beta)$

4

ii) The locus of the point P(x, y) is given by

$$\tan^{-1}\left(\frac{y}{x-2}\right) - \tan^{-1}\left(\frac{y}{x+2}\right) = \frac{\pi}{4}$$

Using Part (i) or otherwise, show that the point P lies on a circle and find its centre and radius.

Question 3: (Start a new page)

Marks

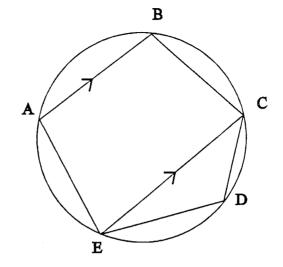
3

5

a) A, B, C, D and E are points on the circumference of a circle such that AB | EC

Copy the diagram into your workbook.

Prove that $\angle ADE = \angle BDC$



- b) A man in a balloon observes a dog due South with an angle of depression of 66°. He also observes a cat on a bearing of 120° from a point on the ground beneath the balloon with an angle of depression of 78°. If the dog and the cat are 100 metres apart, how high is the man in the balloon?
- c) Susan invests \$6000 for 5 years. The expected return over the 5 years is 8% per annum, compounded monthly.
 - i) What is the expected value of the investment at the end of the 5 years?
 - ii) In fact, at the end of the second year, the interest rate reduces to 6% per annum and remains at this level for the remaining three years. Calculate the value of the investment at the end of the 5 years.

Question 4: (Start a new page)

- a) Find the coefficient of x^3 in the expansion of $\left(2x \frac{1}{x^2}\right)^9$
- b) In a factory, it is known that one in every hundred machines produced is defective. If a company buys 10 machines, what is the probability that no more than one is defective? Give your answer as a decimal correct to 3 decimal places.

Question 4 (continued)

Marks

6

2

6

The velocity, $v \text{ ms}^{-1}$, of a particle at time, t seconds, is given in terms of its position, x m, by the equation

$$v = \frac{4}{x} \qquad (x > 0)$$

Initially, x = 8.

- i) Find the acceleration of the particle when x = 1
- ii) By expressing v as $\frac{dx}{dt}$, find an expression for x in terms of t.
- iii) What is the position of the particle when t = 2?
- iv) Describe the motion of the particle.

Question 5: (Start a new page)

a) Find
$$\int x(3x - 1)^3 dx$$
 using the substitution $u = 3x - 1$

- b) i) Show that there is a root of the equation $\log_e x \sin x = 0$ between x = 2 and x = 3
 - ii) Using a first approximation of x = 2.5, use Newton's Method twice to obtain a better approximation.
- A stone is thrown from the top of a building, 15 metres high, with an initial velocity of 26 ms⁻¹ at an angle of $\tan^{-1}\left(\frac{5}{12}\right)$ to the horizontal. If the acceleration due to gravity is taken as 10 ms⁻², find, by deriving the relevant equations of motion,
 - i) the greatest height above the ground that the stone reaches.
 - ii) the time of flight and the range of the stone.
 - iii) the velocity and direction of motion after 2 seconds.

Question 6: (Start a new page)

Marks

A particle moves in Simple Harmonic Motion so that its position, x cm, at any time, t, is given by the equation

6

$$x = 4\cos\left(2t - \frac{\pi}{2}\right)$$

- i) Find \dot{x} and \ddot{x}
- ii) Show that $v^2 = 4(16 x^2)$
- iii) Determine the time taken for the particle to first reach x = 2 and find the velocity at this time.
- b) i) Differentiate $(x + 1)e^{-x}$

3

- ii) Hence find the area of the region bounded by $y = x e^{-x}$ and the x-axis from x = 0 to x = 2
- c) Consider the statement

3

$$5^n$$
 - 1 is divisible by 4.

Show that, if the statement is true for n = k, then it is true for n = k + 1

Question 7: (Start a new page)

Marks

a) The rate of change of temperature, T° , of an object is given by the equation

5

 $\frac{dT}{dt} = k(T - 16)$ degrees per minute, where k is a constant.

i) Show that the function $T = 16 + Pe^{kt}$, where P is a constant and t is the time in minutes, satisfies this equation.

ii) If initially T = 0 and after 10 minutes T = 12, find the values of P and k.

iii) Find the temperature of the object after a further 5 minutes.

iv) Sketch the graph of T as function of t and describe its behaviour as t continues to increase.

b) If $f(n) = 2(\log_e 2)^n - n \times f(n-1)$ and f(0) = 2, show that $f(4) = 2(\log_e 2)^4 - 8(\log_e 2)^3 + 24(\log_e 2)^2 - 48\log_e 2 + 48$

c) i) Show that

(1)
$$1 + \frac{2}{1 + \sqrt{5}} = \frac{1 + \sqrt{5}}{2}$$
 (2) $1 + \frac{2}{1 - \sqrt{5}} = \frac{1 - \sqrt{5}}{2}$

ii) Hence, or otherwise, show that

$$\left(\frac{1+\sqrt{5}}{2}\right)^{k} - \left(\frac{1-\sqrt{5}}{2}\right)^{k} + \left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}$$

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

NSW INDEPENDENT TAIAL HSC: SOLUTIONS TO MATHEMATICS SUNIT PAPER 則的 5!=120 (d) / Ismx - sm Ix dx (ii) $P(3 \text{ vowels}) = \frac{3!}{5!} = \frac{4}{3!} = \frac{3}{10} = [-2\cos x + \frac{1}{2}\cos 2x]^{\frac{\pi}{2}}$ $= (-2\cos x + \frac{1}{2}\cos 2x) - (-2\cos 0 + \frac{1}{2}\cos 0)$ (b) 1-x < 1 Critical values at: X=-1 and 1-X=102 pj i Amphtode = 3 1-x = 1+xPeriod = X Test: X=1 => 1-1 61 V $x = -\frac{1}{2} \Rightarrow \frac{1 - \frac{1}{2}}{4 - \frac{1}{2}} = 3 \neq 1 \times$ (i) V= x 5 y2dx x=-2 => 1-2 =-3 < 1 / = x (x gom² 2x dx : x<-1 and x 70 $= 9\pi \int_{-\frac{1}{2}}^{\frac{1}{2}} (1 - \cos 4x) dx$

 $= 9x \left[x - \frac{1}{4} sm 4x \right]^{2}$

= 922

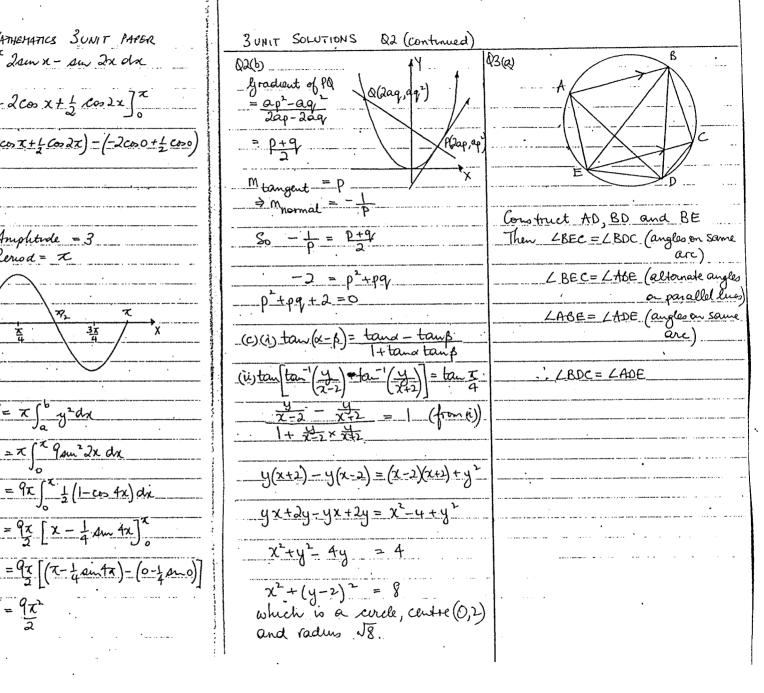
(c) (1) $P(2) = 2^4 - 7x2^3 + 0x2^2 + 4x2 - 16$

(ii, P(x) = (x-2)(x-2) Q(x)

 $\varphi P(x) = (x-2)^2(x+1)(x-4)$

P(-1)= 0 - (x+1) w a factor

. Remander is O



3 UNIT SOLUTIONS Q3 (continued).

3(b) tan 2y = x 12° 12°

1002 = x2 + y2 - 2xy coo 60 = h2 tan 24 + h2 tan 12 - 2. h tan 24 x h tan 12 x L = h2 (tan 24 + tan 12 - tan 24 tan 12) - 1 h2 = 1002

h = 259-26 m ~ 260 metres

(X1) P= 6000, n=60, r= 8/12

 $A = P\left(1 + \frac{1}{100}\right)^n$ $= 6000 \left(1 + \frac{912}{100}\right)^{60}$

= \$ 8939.07

(ii) Calculate the accumulated value after 2 years. This becomes the principal for the remaining 3 years.

P = 6000; N = 24; r = 912

A = 6000 (1+8/12)²⁴ = \$7037.33

Then P = 7037.33, N = 36; r = 6/12

A = 7057.33 (1+9/12)³⁶ = \$8421.43

We require he coefficient of z3:

guing 9(, 27(-1) x3 = 4608 x3 -. coefficient is 4608

(b) Let p= probability of defective = 100 q = probability of non defective = 99

n = 10

Let X= no of defective machines. Then P(X=r)= nCr prqn-r

 $= C_r \left(\frac{1}{100}\right)^r \left(\frac{99}{100}\right)^{10-r}$

P(no more than 1) = P(X=0) + P(X=1)

 $= {}^{10}C_{0}\left(\frac{1}{100}\right)^{6}\left(\frac{99}{100}\right)^{16} + {}^{10}C_{1}\left(\frac{1}{100}\right)^{1}\left(\frac{99}{100}\right)^{9}$

= 0.996

3 UNIT SOLUTIONS & (continued)

04(CA) $v = \frac{4}{x}$ $a = \frac{dv}{dt} = \frac{4v}{dx} \times \frac{dx}{dt}$ $= -\frac{4}{x^2} \times \frac{4}{x} = -\frac{16}{x^3}$ when x = 1, $a = -\frac{16}{x} = -\frac{16}{x^3} = -\frac{16}{x^3}$ (ii) $\frac{dx}{dt} = \frac{4}{x}$ $\frac{dt}{dt} = \frac{x}{x}$ $\frac{dt}{dt} = \frac{x}{x} + C$

At t=0, $x=8 \Rightarrow c=-8$ $t = \frac{x^2}{8} - 8$

. 8t+64 = x² ⇒ x = √8t+64 (suce x>0)

(iii) At t=2, x=1/80

(w). The particle moves away from x=8 with velocity decreasing and acceleration, acting in a negative direction, also decreasing.

Q(xa) If u=3x-1 $du=3 dx \Rightarrow dx=\frac{1}{3} du$

Also x = 1/3 (u+1)

: $I = \int x (3x-1)^3 dx$ = $\int \frac{1}{3} (u+1) \cdot u^3 \cdot \frac{1}{3} du$

 $= \frac{1}{9} \int u^4 + u^3 du$

 $= \frac{1}{4} \left(\frac{u^5 + u^4}{5} \right) + C$

 $= \frac{1}{45} (3x-1)^{5} + \frac{1}{36} (3x-1)^{4} + C$

b) (i) f(x) = lux - sux

f(2)= ln2-sun2=-0.216<0

f(3) = h.3- su 3 =+0.957>0 +f(x) is continuous between x=2, x=3

... A root exist between x=2+x=3

(ii) f'(x) = /x - con xAo $x_i = x - \frac{f(x)}{f'(x)}$

= x - lux-sinx 1/x - corx

If x = 2.5, $x_1 = 2.235$ and $x_2 = 2.219$

3 UNIT SOLUTIONS OF 6(a)(i) x = 4 cos (2t - 7/2) V= x= - 8 su (2t - 7/2) a=x=-16 cos (2t- 7/2) (ii) V= 64 cm (2t - 4,) = 64 (1-cos (2t-4)) = 4(16-16cor (2t-7/2)) = 4(16- x;) (iii) At x=2, 4cos(2t-75)-2 Cos (2t-7/2) = 1/2 2t -7/ = -7/ 7/3 2t = 3/6,5 x/6... also, V = - 8 su (2t - 7/2) = -8 su (36-3/2) = +4/3 (b) () d (x+1)e-2)= $--\int xe^{-x} dx = -(x+i)e^{-x} + C$ $+\int_{0}^{2} xe^{-x} dx = \int_{0}^{2} -(x+i)e^{-x}$ = 1-3e-2 ÷ 0.594

(c) Assume 5k-1 = 4H, where Mis an weeger. Then 5k+1-1 $=(5^{k}-1).5+4$ = 4M, 5 +4 (Armabove) = 4(5M+1) but, suice Mis anuteger, 5/1+1 6 an integer and so 5/2+1-1 is a multiple of 4 As the statement is true for n=k+1 if it is true for n=k.

3 UNIT SOLUTIONS 87	•
	(c)(i) 1. 1+ 2 = 1+ 2.(1-55)
dT=0+P. kext	
dt = 0+P. kert dt = k. Pert	= - 4+2-25s
= k (T-16)	-4
	= -2-255 = 1472
a, At t=0, T=0 ⇒0=16+Pe°	2-11=(0)
λο T= 16-16ekt	2: 1+ 2 = 1+ 2(1+55)
10 1= 10-16e K	= -4+2425
At t=10, T=12 => 12=16-16e 10k elok = 4/16	· _
4 k = 1/10 lu 1/4 = -0-139	. = -2+25 = 1-15
•	(i) 1th= (1+55/k, /1+55/k=1
(iii) At t-15, T=16-16e-0-139x15	(i) Lth= (1+15) k+ (1+15) k=1
= 14	$-\left[\frac{\left(1-\sqrt{s}\right)^{k}+\left(1-\sqrt{s}\right)^{k-1}}{2}\right]$
	l
(10) 16	$=\left(\frac{1+\sqrt{2}}{2}\right)^{R}\left[1+\left(\frac{1+\sqrt{2}}{2}\right)^{-1}\right]$
	$-\left(\frac{ -\langle S \rangle ^k}{2}\right)^k \left[\frac{1+\left(\frac{1-\sqrt{S}}{2}\right)^{-1}}{2}\right]$
As + → 10, T → 16	=(1+V5) 1+27-11-12 11 27
	$= \frac{1+\sqrt{5}}{2} \left[\frac{1+2}{1+\sqrt{5}} - \frac{1-\sqrt{5}}{2} \right] \left[\frac{1+2}{1-\sqrt{5}} \right]$
$(b) f(4) = 2(ln 2)^4 - 4 f(3)$	$= \left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^k \left(\frac{1-\sqrt{5}}{2}\right)$
$f(3) = 2(l_{12})^{3} - 3 + (2)$	(2) (2) (2) (2)
$f(\lambda) = \lambda(\ln \lambda)^{2} - \lambda f(\lambda)$	$= \left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1+\sqrt{5}}{2}\right)^{k+1}$
f()=2h2-f(0) 4f(0)=2	= (1+15)K+1 - (1/-15)K+1
$f(1) = 2 \ln 2 - 2$ $f(2) = 2(\ln 2)^2 - 4 \ln 2 + 4$	
$f(3) = 2(\ln 2)^3 - 6(\ln 2)^2 + 12\ln 2 - 12$	
$f(y) = 2(\ln x)^4 - 8(\ln x)^3 + 24(\ln x)^2$	
- 48 h 2 + 48	
10/10/20	

•

ž

•