CLASS (circle one)

12MAÈ1 Wilson

12MAE4 Paraskevas

12MAE7 Howlett

2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

- **General Instructions**
- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- · Board-approved calculators may
- A table of standard integrals is provided at the back of this paper.
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total Marks - 70

Section I | Pages 2 – 4

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II Pages 5 – 10

60 marks

- Attempt Questions 11 14
- Allow about 1hour and 45 minutes for this section

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_a x$, x > 0

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the domain and range of $y = \frac{1}{2} \cos^{-1}(\frac{x}{2})$?
 - (A) Domain: $-2 \le x \le 2$ Range: $0 \le y \le \pi$
 - (B) Domain: $-1 \le x \le 1$ Range: $0 \le y \le \pi$
 - (C) Domain: $-2 \le x \le 2$ Range: $0 \le y \le \frac{\pi}{2}$
 - (D) Domain: $-1 \le x \le 1$ Range: $0 \le y \le \frac{\pi}{2}$
- When a polynomial $P(x) = x^3 + ax + 1$ is divided by (x+2) the remainder is 5. What is the value of a?
 - (A) −6
 - (B) -3.5
 - (C) 2
 - (D) 3
- 3 Which of the following is an expression for $\int \frac{x}{(2-x^2)^3} dx$?

Use the substitution $u = 2 - x^2$.

(A)
$$\frac{1}{2(2-x^2)^3} + C$$

(B)
$$\frac{1}{4(2-x^2)^2} + C$$

(C)
$$\frac{1}{4(2-x^2)^4} + C$$

(D)
$$\frac{1}{8(2-x^2)^4} + C$$

- 4 What is the exact value of the definite integral $\int_0^1 \frac{1}{x^2+1} dx$?
 - (A) $\frac{7}{4}$
 - (B) $\frac{\pi}{3}$
 - (C) $\frac{\pi}{2}$
 - (D) π
- 5 How many arrangements of all of the letters of the word PROBABILITY are possible?
 - (A) 362 880
 - (B) 9 979 200
 - (C) 19 958 400
 - (D) 39 916 800
- 6 Find the acute angle between the lines y = 2x and x + y 5 = 0. Answer correct to the nearest degree.
 - (A) 18°
 - (B) 32°
 - (C) 45°
 - (D) 72°
- 7 What is the exact value of the definite integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (1 + \sin^2 x) dx$?
 - (A) $\frac{\pi}{4} + \frac{1}{2}$
 - (B) $\frac{\pi}{8} + \frac{1}{8}$
 - (C) $\frac{\pi}{4} \frac{\sqrt{3} 2}{4}$
 - (D) $\frac{\pi}{8} \frac{\sqrt{3} 2}{8}$

- 8 What are the coordinates of the point that divides the interval joining the points A(-1,2) and B(3,5) externally in the ratio 3:1?
 - (A) (2.5, 4.25)
 - (B) (2.5, 6.5)
 - (C) (5, 4.25)
 - (D) (5,6.5)
- 9 What is the solution to the inequality $\frac{2x-5}{x-4} \ge x$?
 - (A) $x \le -1$ and $4 \le x \le 5$
 - (B) $x \le -1$ and $4 < x \le 5$
 - (C) $x \le 1$ and $4 \le x \le 5$
 - (D) $x \le 1$ and $4 < x \le 5$
- 10 The velocity of a particle moving in a straight line is given by v = 2x + 5, where x metres is the distance from fixed point O and v is the velocity in metres per second. What is the acceleration of the particle when it is 1 metre from O?
 - (A) $a = 7 \text{ ms}^{-2}$
 - (B) $a = 12 \text{ ms}^{-2}$
 - (C) $a = 14 \text{ ms}^{-2}$
 - (D) $a = 24 \text{ ms}^{-2}$

Section II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

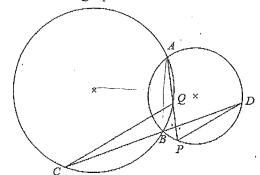
Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 11 (15 marks)

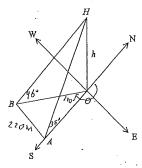
Marks

- (a) What are the roots of the equation $4x^3 4x^2 29x + 15 = 0$ given that one root is the difference between the other two roots?
- 3
- b) Two circles meet at A and B. CBD is a straight line and AQP is a chord of the smaller circle. Prove that CQ is parallel to PD.



- (c) Prove the following identity
 - $\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\sin \theta}{\cos \theta \sin \theta} = \tan 2\theta$
- (d) A class consists of 10 boys and 12 girls. How many ways are there of selecting a committee of 3 boys and 2 girls from this class?
- 2

(e) Point A is due south of a hill and the angle of elevation from A to the top of the hill is 35°. Another point B is a bearing 200° from the hill and the angle of elevation from B to the top of the hill is 46°. The distance AB is 220 m.



(i) Express OA and OB in terms of h.

- 2 2
- (ii) Calculate the height h of the hill correct to three significant figures.
- (f) Factorise $x^3 + 3x^2 9x + 5$

2

Que	stion 12 (15 marks)	Marks
(a)	 The tangent at the point P(2ap, ap²) on the parabola x² = 4ay cuts the x-axis at A and the y-axis at B. (i) Find the coordinates of M, the midpoint of A and B in terms of P. (ii) Show that the locus of M is a parabola. (iii) Find the coordinates of the focus of this parabola and the equation of the directrix. 	2 1 1
(b)	Use the principle of mathematical induction to prove that for all positive integers n : $1+2+4++2^{n-1}=2^n-1$	3
(c)	Find the exact value of $\sin \left[\cos^{-1} \frac{2}{3} + \tan^{-1} \left(-\frac{3}{4} \right) \right]$	2
(d)	Find all the angles θ with $0 \le \theta \le 2\pi$ for which $\sin \theta + \cos \theta = 1$.	3
(e)	The function $f(x)$ is given by $f(x) = \sin^{-1} x + \cos^{-1} x$, $0 \le x \le 1$.	,

Find f'(x).

Sketch the graph of y = f(x).

Question 13 (15 marks)		Marks	
(a)	(i)	Show that the function $f(x) = xe^x - 1$ has a zero between $x = 0$ and $x = 1$.	1
	(ii)	Using $x = 0.5$ as the first approximation, use Newton's Method to obtain a second approximation. Answer correct to 2 decimal places.	2
(b)	away	fer hits a golf ball to clear a 6 metres high tree. The tree is 20 metres on level ground. The golfer uses a golf club that produces an angle of ion of 40°. Take $g = 10 \text{ ms}^{-2}$	
	(i)	Derive the expressions for the vertical and horizontal components of the displacement of the ball from the point of projection.	3
	(ii)	What is the Cartesian equation of the flight path?	2
	(iii)	Calculate the speed at which the ball must leave the ground to just clear the tree. Answer correct to one decimal place.	2
			· ·
(c)	(i)	Expand $(1-x)^n$ using the binomial theorem.	1
	(ii)	Show that $\int_0^1 (1-x)^n dx = {}^nC_0 - \frac{1}{2} {}^nC_1 + \frac{1}{3} {}^nC_2 - \ldots + \frac{(-1)^n}{n+1} {}^nC_n$	2
	(iii)	Show that $\frac{1}{n+1} = \sum_{r=0}^{n} (-1)^r \frac{1}{r+1} {}^{n}C_r$	2

Qu	estion :	14 (15 marks)	Marks
(a)	Find	$\int \cos^2 2x dx$	2
(b)	A par	rticle moves in a straight line and its position at any time is given by:	
		$x = 3\cos 2t + 4\sin 2t$	
	(i)	Prove that the motion is simple harmonic.	2
	(ii)	Calculate the particle's greatest speed.	2
(c)	temp	r at a temperature of 24°C is placed in a freezer maintained at a erature of -12 °C. After time t minutes the rate of change of erature T of the water is given by the formula:	
		$\frac{dT}{dt} = -k(T+12)$	
	where	e t is the time in minutes and k is a positive constant.	
	(i)	Show that $T = Ae^{-kt} - 12$ is a solution of this equation, where A is a constant.	1
	(ii)	Find the value of A.	1
	(iii)	After 15 minutes the temperature of the water falls to 9°C. Find to the nearest minute the time taken for the water to start freezing. (Freezing point of water is 0°C).	3
(d)		rectangular table in a hall has nine seats, five facing the front and four g the back. In how many ways can 9 people be seated at a table if:	
	(i)	Alex and Bella must sit on the same side.	2
	(ii)	Alex and Bella must sit on opposite sides	2

End of paper

Examination 2014

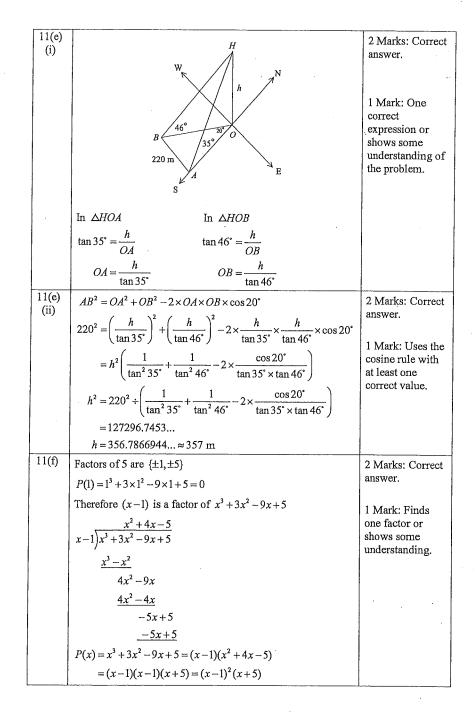
HSC Mathematics Extension 1

Worked solutions and marking guidelines

Section	Section I		
	Solution .	Criteria	
1	Domain: $-1 \le \frac{x}{2} \le 1$ or $-2 \le x \le 2$. Range: $\frac{1}{2} \times 0 \le y \le \frac{1}{2} \times \pi$ or $0 \le y \le \frac{\pi}{2}$	1 Mark: C	
2	$P(x) = x^{3} + ax + 1$ $P(-2) = (-2)^{3} + a \times -2 + 1 = 5$ $-2a = 12$ $a = -6$	1 Mark: A	
3	$u = 2 - x^{2}$ $\frac{du}{dx} = -2x$ $-\frac{1}{2}du = xdx$ $\int \frac{x}{(2 - x^{2})^{3}} dx = -\frac{1}{2} \int \frac{1}{u^{3}} du$ $= -\frac{1}{2} \times -\frac{1}{2} u^{-2} + C$ $= \frac{1}{4(2 - x^{2})^{2}} + C$	1 Mark: B	
4	$\int_{0}^{1} \frac{1}{x^{2} + 1} dx = \left[\tan^{-1} x \right]_{0}^{1}$ $= \frac{\pi}{4} - 0$ $= \frac{\pi}{4}$	1 Mark: A	
5	Number of arrangements = $\frac{11!}{2 \times 2!}$ (2 I's and 2 B's) = 9 979 200	1 Mark: B	
6	For $y = 2x$ then $m_1 = 2$ For $x + y - 5 = 0$ then $m_2 = -1$ $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right = \left \frac{2 - (-1)}{1 + 2 \times -1} \right $ $= 3$ $\theta = 71.56505118$ $\approx 72^{\circ}$	1 Mark: D	

		T
7	$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (1+\sin^2 x) d = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} (1+\frac{1}{2}(1-\cos 2x) dx)$ $= \left[\frac{3}{2}x - \frac{1}{4}\sin 2x\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$ $= \left[\left(\frac{\pi}{2} - \frac{1}{4}\sin \frac{2\pi}{3}\right) - \left(\frac{3\pi}{8} - \frac{1}{4}\sin \frac{\pi}{2}\right)\right]$ $= \left[\left(\frac{\pi}{2} - \frac{\sqrt{3}}{8}\right) - \left(\frac{3\pi}{8} - \frac{1}{4}\right)\right]$ $= \frac{\pi}{8} - \frac{\sqrt{3} - 2}{8}$	1 Mark: D
8	$A(-1,2) \text{ and } B(3,5) \text{ with } 3:-1$ $x = \frac{mx_2 + nx_1}{m+n} \qquad y = \frac{my_2 + ny_1}{m+n}$ $= \frac{3 \times 3 + -1 \times -1}{3 + -1} \qquad = \frac{3 \times 5 + -1 \times 2}{3 + -1}$ $= 5 \qquad = 6.5$ Point is (5,6.5)	1 Mark: D
9	$(x-4)^{2} \times \frac{2x-5}{x-4} \ge x \times (x-4)^{2} \qquad (x \ne 4)$ $(x-4)(2x-5) - x(x-4)^{2} \ge 0$ $(x-4) \left[(2x-5) - x(x-4) \right] \ge 0$ $(x-4)(-x^{2} + 6x - 5) \ge 0$ $(x-4)(x-5)(1-x) \ge 0$ Critical points are 1,4 and 5 Test values in each region $x \le 1 \text{ and } 4 < x \le 5$	1 Mark: D
10	$v = 2x + 5$ $v^{2} = 4x^{2} + 20x + 25$ $\frac{1}{2}v^{2} = 2x^{2} + 10x + \frac{25}{2}$ $a = \frac{d}{dx}\left(2x^{2} + 10x + \frac{25}{2}\right)$ $= 4x + 10$ When $x = 1$ then $a = 14$	1 Mark; C

Section	П	
11(a)	Let the roots be α , β and $\alpha - \beta$.	3 Marks: Correct
	$4x^3 - 4x^2 - 29x + 15 = 0$	answer.
	$\alpha + \beta + (\alpha - \beta) = -\frac{b}{a} = -\frac{-4}{4} = 1$ $2\alpha = 1 \text{ or } \alpha = \frac{1}{2}$	2 Marks: Makes significant progress towards the solution.
	$\alpha\beta(\alpha - \beta) = -\frac{d}{a}$ $\frac{1}{2}\beta(\frac{1}{2} - \beta) = -\frac{15}{4}$ $\beta(\frac{1}{2} - \beta) = -\frac{15}{2}$ $2\beta^2 - \beta - 15 = 0$	1 Mark: Finds the sum or product of the roots.
	$(2\beta + 5)(\beta - 3) = 0$ $\beta = -\frac{5}{2} \text{ or } \beta = 3$ Roots are $x = -\frac{5}{2}$, $x = \frac{1}{2}$ and $x = 3$	
11(b)	Join A to B	2 Marks: Correct
	$\angle BCQ = \angle BAQ$ (Angle in the same segment standing on the same arc are equal) $\angle BAP = \angle BDP$ (Angle in the same segment standing on the same arc are equal) $\angle BCQ = \angle BDP$ ($\angle BAQ$ and $\angle BAP$ are the same angle) $\therefore CQ/PD$ (alternate angles are equal).	answer. 1 Marks: Makes some progress towards the solution.
11(c)	LHS = $\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\sin \theta}{\cos \theta - \sin \theta}$ = $\frac{\sin \theta (\cos \theta - \sin \theta) + \sin \theta (\cos \theta + \sin \theta)}{(\cos \theta + \sin \theta)(\cos \theta - \sin \theta)}$ = $\frac{2 \sin \theta \cos \theta}{\cos^2 \theta - \sin^2 \theta}$ = $\frac{\sin 2\theta}{\cos 2\theta}$	2 Marks: Correct answer. 1 Marks: Uses a relevant trigonometric identity
	$= \frac{1}{\cos 2\theta}$ $= \tan 2\theta = \text{RHS}$	
11(d)	Number of ways = ${}^{10}C_3 \times {}^{12}C_2$ = 120×66 = 7920	2 Marks: Correct answer. 1 Marks: Shows
	Class can be selected in 7920 ways.	some understanding.



12(a)	To find the gradient of the tangent	2 Marks: Correct
(i)		answer.
	$y = \frac{1}{4a}x^2$ and $\frac{dy}{dx} = \frac{1}{2a}x$	
	2. dv 1	1 Mark: Finds the
	At $P(2ap, ap^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$	gradient of the
	Equation of the tangent at $P(2ap, ap^2)$	tangent or the coordinates of A
	$y - y_1 = m(x - x_1)$	and B .
	$y - ap^2 = p(x - 2ap)$	
	$y = px - ap^2$	
	x-intercept $(y = 0)$ then $x = ap$. Hence $A(ap, 0)$	
	y-intercept $(x=0)$ then $y=-ap^2$. Hence $B(0,-ap^2)$	
	Midpoint of A and B .	
	$M\left(\frac{ap+0}{2},\frac{0+-ap^2}{2}\right) = M\left(\frac{ap}{2},\frac{-ap2}{2}\right)$	
12(a)	To find the locus of M eliminate p from coordinates of M	1 Mark: Correct
(ii)	Now $x = \frac{ap}{2}$ (1) and $y = \frac{-ap^2}{2}$ (2)	answer.
	From (1) $p = \frac{2x}{q}$ and sub into eqn (2)	
	$y = \frac{-a(\frac{2x}{a})^2}{2} = \frac{-a}{2} \times \frac{4x^2}{a^2} = -\frac{2x^2}{a}$	
	or $x^2 = -\frac{1}{2}ay$ (parabola)	
12(a) (iii)	$x^2 = -\frac{1}{2}ay = 4 \times \left(-\frac{1}{8}a\right) \times y$	1 Mark: Correct answer.
	Focus is $\left(0, -\frac{1}{8}a\right)$ and equation of the directrix $y = \frac{1}{8}a$:
12(b)	Step 1: To prove the statement true for $n=1$	3 Marks: Correct
	LHS = 1 $RHS = 2^1 - 1 = 1$	answer.
	Result is true for $n=1$	2 Marks: Proves the result true for
		n=1 and
	Step 2: Assume the result true for $n = k$	attempts to use
	$1 + 2 + 4 + \dots + 2^{k-1} = 2^k - 1$	the result of $n = k$ to prove
	To prove the result is true for $n = k + 1$	the result for
	$1 + 2 + 4 + \dots + 2^{k-1} + 2^k = 2^{k+1} - 1$	n=k+1.

	LHS = $1 + 2 + 4 + + 2^{k-1} + 2^k$	1 Mark: Proves
	$=2^k-1+2^k$	the result true for
	$=2\times 2^k-1$	n=1.
	$=2^{k+1}-1$	
	= RHS	
	Result is true for $n = k + 1$ if true for $n = k$	
	Step 3: Result true by principle of mathematical induction.	
12(c)	step 3. Result true by principle of mathematical induction.	
12(0)	Let $\alpha = \cos^{-1}\frac{2}{3}$ and $\beta = \tan^{-1}\left(-\frac{3}{4}\right)$	2 Marks: Correct answer.
	$\frac{3}{\sqrt{5}} \sqrt{5}$ $\sin\left[\cos^{-1}\frac{2}{3} + \tan^{-1}\left(-\frac{3}{4}\right)\right] = \sin(\alpha + \beta)$	1 Mark: Sets up the two triangles or shows some understanding of the problem.
	$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $= \frac{\sqrt{5}}{3} \times \frac{4}{5} + \frac{2}{3} \times -\frac{3}{5} = \frac{4\sqrt{5} - 6}{15}$	
10(4)	3 3 3 3 13	
12(d)	Let $\sin \theta + \cos \theta = R \sin(\theta + \alpha)$	3 Marks: Correct
	$= R\sin\theta\cos\alpha + R\cos\theta\sin\alpha$	answer.
	$\therefore R\cos\alpha = 1 \text{ and } R\sin\alpha = 1$	
	$R^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = 2$ and $\tan \alpha = 1$ or $\alpha = \frac{\pi}{4}$ $R = \sqrt{2}$	2 Marks: Finds two angles or makes significant progress towards
	$\sin\theta + \cos\theta = \sqrt{2}\sin(\theta + \frac{\pi}{4}) = 1$	the solution.
	$\sin(\theta + \frac{\pi}{4}) = \frac{1}{\sqrt{2}}$ $\theta + \frac{\pi}{4} = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \dots$	1 Mark: Sets up the sum of two angles or shows some understanding of
16()	$\theta = 0, \frac{\pi}{2}, 2\pi$	the problem.
12(e) (i)	$f(x) = \sin^{-1} x + \cos^{-1} x$	1 Mark: Correct
(1)	$f'(x) = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0$	answer.

12(e) (ii)	Since $f'(x) = 0$, $f(x)$ is a constant (gradient of tangent is 0) Let $x = 0$ then $f(0) = \sin^{-1} 0 + \cos^{-1} 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$ Therefore $f(x) = \frac{\pi}{2}$ for $0 \le x \le 1$	2 Marks: Correct answer. 1 Mark: Recognises that the graph is a horizontal line or shows some understanding of the problem.
13(a) (i)	$f(x) = xe^{x} - 1$ $f(0) = 0 \times e^{0} - 1 = -1 < 0$ $f(1) = 1 \times e^{1} - 1 = e - 1 > 0$	1 Mark: Correct answer.
	Therefore the root lies between $x=0$ and $x=1$.	
13(a) (ii)	$f(x) = xe^{x} - 1 f'(x) = xe^{x} + e^{x} = e^{x}(x+1)$ $f(0.5) = 0.5e^{0.5} - 1 f'(0.5) = e^{0.5}(0.5+1) = 1.5e^{0.5}$ $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$	2 Marks: Correct answer. 1 Mark: Finds f (0.5), f '(0.5) or shows some understanding of
	$= 0.5 - \left(\frac{0.5e^{0.5} - 1}{1.5e^{0.5}}\right) = 0.5710204398 \approx 0.57$	Newton's method.
13(b) (i)	Horizontal Motion $\ddot{x} = 0$ $\dot{x} = c_1$ (when $t = 0$, $\dot{x} = v \cos 40^\circ$) $\dot{x} = v \cos 40^\circ$	3 Marks: Correct answer. 2 Marks: Derives
	$x = v \cos 40^{\circ} t + c_2 \text{ (when } t = 0, x = 0)$ $x = v \cos 40^{\circ} t (1)$ Vertical Motion $\ddot{y} = -10$ $\dot{y} = -10t + c_1 \text{ (when } t = 0, \dot{y} = v \sin 40^{\circ})$	either the horizontal or vertical equations of motion.
	$\dot{y} = -10t + v \sin 40^{\circ}$ $y = -5t^{2} + v \sin 40^{\circ}t + c_{2} \text{ (when } t = 0, y = 0)$ $y = -5t^{2} + v \sin 40^{\circ}t \qquad (2)$	1 Mark: States the expressions.

13(b) (ii)	From eqn (1) $t = \frac{x}{v \cos 40^{\circ}}$ sub into eqn (2)	2 Marks: Correct answer.
	$y = -5\left(\frac{x}{v\cos 40^{\circ}}\right)^{2} + v\sin 40^{\circ}\left(\frac{x}{v\cos 40^{\circ}}\right)$ $= -\frac{5x^{2}}{v^{2}}\sec^{2} 40^{\circ} + x\tan 40^{\circ}$	1 Mark: Eliminates <i>t</i> or shows some understanding.
13(b) (iii)	To find v for $x = 20$ and $y = 6$ $6 = -\frac{5 \times 20^2}{v^2} \sec^2 40^\circ + 20 \times \tan 40^\circ$	2 Marks: Correct answer.
	$v^{2} = \frac{5 \times 20^{2} \times \sec^{2} 40^{*}}{20 \tan 40^{\circ} - 6}$ $v = 17.77917137$ $\approx 17.8 \text{ ms}^{-1}$	1 Mark: Makes some progress towards the solution.
13(c) (i)	$(1-x)^n = {}^nC_01^n + {}^nC_11^{n-1}(-x)^1 + {}^nC_21^{n-2}(-x)^2 + \dots + {}^nC_n1^1(-x)^n$ = ${}^nC_0 - {}^nC_1x^1 + {}^nC_2x^2 - \dots + (-1)^{n}{}^nC_nx^n$	1 Mark: Correct answer.
13(c) (ii)	Integrate both sides of the identity $\int_{0}^{1} (1-x)^{n} dx = \left[{}^{n}C_{0}x - {}^{n}C_{1}\frac{x^{2}}{2} + {}^{n}C_{2}\frac{x^{3}}{3} - \dots + (-1)^{n}C_{n}\frac{x^{n+1}}{n+1} \right]_{0}^{1}$ $= {}^{n}C_{0} - \frac{1}{2} {}^{n}C_{1} + \frac{1}{3} {}^{n}C_{2} - \dots + \frac{(-1)^{n}}{n+1} {}^{n}C_{n}$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
13(c) (iii)	$\int_0^1 (1-x)^n dx = {^nC_0} - \frac{1}{2} {^nC_1} + \frac{1}{3} {^nC_2} - \dots + \frac{(-1)^n}{n+1} {^nC_n}$	2 Marks: Correct answer.
	$\left[\frac{(1-x)^{n+1}}{-(n+1)}\right]_0^1 = \sum_{r=0}^n (-1)^r \frac{1}{r+1} {}^n C_r$ $- \left[0 - \frac{1^{n+1}}{n+1}\right] = \sum_{r=0}^n (-1)^r \frac{1}{r+1} {}^n C_r$ $\frac{1}{n+1} = \sum_{r=0}^n (-1)^r \frac{1}{r+1} {}^n C_r$	1 Mark: Makes some progress towards the solution.
14(a)	$\int \cos^2 2x dx = \int \frac{1}{2} (1 + \cos 4x) dx$	2 Marks: Correct answer.
	$= \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right] + c$ $= \frac{x}{2} + \frac{1}{8} \sin 4x + c$	1 Mark: Uses double angle formula.

14(b) (i)	Simple harmonic motion occurs when $\ddot{x} = -n^2 x$ Now $x = 3\cos 2t + 4\sin 2t$	2 Marks: Correct answer.
		1 Mark:
	$\dot{x} = -3 \times 2\sin 2t + 4 \times 2\cos 2t$	Recognises the
	$\ddot{x} = -3 \times 2^2 \cos 2t - 4 \times 2^2 \sin 2t$	condition for
	$=-2^2\left(3\cos 2t+4\sin 2t\right)$	SHM.
	$\ddot{x} = -2^2 x$	
14(b)	Maximum speed at $\ddot{x} = 0$ or $x = 0$ (centre of motion)	2 Marks: Correct
(ii)	$x = 3\cos 2t + 4\sin 2t = 0$	answer.
	$4\sin 2t = -3\cos 2t$	1
	$\tan 2t = -\frac{3}{4}$	1 Mark: Makes
	, '	some progress towards the
	$2t = \tan^{-1}(-0.75) + n\pi$, where <i>n</i> is an integer	solution.
	$2t = -0.6435011088+0, \pi, 2\pi$	
	Smallest positive value of t for maximum speed	
	$t = \frac{1}{2}(-0.6435011088 + \pi) = 1.249045772$	
İ	$\dot{x} = -3 \times 2\sin(2 \times 1.24) + 4 \times 2\cos(2 \times 1.24) = -10$	
	Maximum speed is 10	
	Alternatively show $\dot{x} = -10\sin(2t + \tan^{-1} 0.75)$,
14(c)	$T = Ae^{-kt} - 12$ or $Ae^{-kt} = T + 12$	1 Mark: Correct
(i)	$\frac{dT}{dt} = -kAe^{-kt}$	answer.
	dt	
	=-k(T+12)	
14(c)	Initially $t = 0$ and $T = 24$,	1 Mark: Correct
(ii)	$T = Ae^{-kt} - 12$	answer.
	$24 = Ae^{-k\times 0} - 12$	
	A=36	
14(c)	Also $t = 15$ and $T = 9$	3 Marks: Correct
(iii)	$9 = 36e^{-k \times 15} - 12$	answer.
	$_{-15k}$ 21 7	2 Marks:
	$\left e^{-15k} = \frac{21}{36} = \frac{7}{12} \right $	Determines the value of e^{-kt} or
	15/100 7	makes significant
	$-15k = \log_e \frac{7}{12}$	progress.
	$k = -\frac{1}{15}\log_e \frac{7}{12}$	1 Mark: Finds the
	10 12	value of k or
	= 0.03593310005	shows some understanding.
	We need to find t when $T = 0$	and crommung.

14(d) (i)	$0 = 36e^{-kt} - 12$ $e^{-kt} = \frac{12}{36} = \frac{1}{3}$ $-kt = \log_e \frac{1}{3}$ $t = -\frac{1}{k} \log_e \frac{1}{3}$ $= 30.5738243 \approx 31 \text{ minutes}$ It will take about 31 minutes for the water to cool to 0°C Facing front: Number of ways = $5 \times 4 \times 7!$ Facing back: Number of ways = $4 \times 3 \times 7!$ Total number of ways = $(5 \times 4 + 4 \times 3) \times 7!$ $= 161 280$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
14(d) (ii)	Alex facing front and Bella facing back Number of ways = $5 \times 4 \times 7!$ Bella facing front and Alex facing back Number of ways = $5 \times 4 \times 7!$ Total number of ways = $(5 \times 4 \times 7!) \times 2$ = 201 600	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.