South Sydney High School

GEOMETRY

3 Unit Worksheet

EXERCISE 8: EXAMINATION-TYPE QUESTIONS

1.

In the figure $AB \parallel CD$ and $D\hat{G}F = 125^{\circ}$. Find the size of $E\hat{H}B$.

2.

In the diagram AC = BC and $C\hat{A}B = 67^{\circ}$. Find the size of $B\hat{C}A$.

3.

The figure ABCDE is a regular pentagon.

- (a) Find the size of $B\hat{C}D$.
- (b) What is the size of $C\hat{B}K$?

.

Given AB = AD, BD = CD, $D\hat{A}B = 80^{\circ}$ and $AB \parallel DC$, find the value of x.

5.

In the figure AB = AC and $F\hat{B}D = 52^{\circ}$. Find the size of $A\hat{C}E$.

6.

In the figure A, D and B are collinear. If BD = BC, AD = DC and $B\hat{A}C = 30^{\circ}$, find the size of $C\hat{B}D$.

7.

AB and CD are parallel lines. $B\hat{A}E = 42^{\circ}$ and $C\hat{E}A = 110^{\circ}$ Find the value of x. Give reasons.

9.

13.

14.

15.

In the diagram $\triangle ABC$ is equilateral. A, B and D are collinear. If \hat{CBE} is a right angle, find x, giving reasons.

Use the information given in the diagram to find:

- (a) the value of x;
- (b) the size of $E\hat{B}C$.

In the diagram, not drawn to scale, $\hat{CAB} = 8^{\circ}$, $\hat{EDB} = 110^{\circ}$ and $A\hat{E}F = 96^{\circ}$. Find the size of $A\hat{B}C$.

In the diagram $\triangle ABC$ is isosceles, AB = BC, $AE \parallel BD$, $B\hat{C}A = 42^{\circ}$ and $\mathbf{B}\hat{X}A = 100^{\circ}$.

- (a) Draw a neat sketch of the given diagram and mark on it all the given information.
- (b) Find: (i) $B\hat{F}A$ (ii) $A\hat{B}F$

ABCD is a regular hexagon. A, B, G and I lie on the same straight line. D, C, G and H are collinear. $AI \parallel HJ$

- (a) Find the size of FÂB, giving reasons.
- (b) Find the size of GHJ.

In the figure, $\triangle ABC$ is an isosceles triangle where AB = AC. D and E are points on BC such that $D\hat{A}B = C\hat{A}E$. Prove that $\triangle ADE$ is isosceles.

In the figure, not to scale, AB = BCand BE bisects CBD. Prove that AC||BE.

In the figure, $\triangle ACD$ is an isosceles triangle where AC = DC. Triangle ABC is equilateral. Prove that ABLAD (i.e., show that $D\hat{A}B = 90^{\circ}$).

17.

18.

19.

20.

21.

22.

In the figure, BD = 15 cm, EC = 14 cm, AD = 21 cm and AC || DE.

- (a) Prove $\triangle ABC$ is similar to $\triangle DBE$.
- (b) Hence, find the length of BE.

In the figure, $AB \parallel CD$.

- (a) Prove that $\triangle ABX \mid \triangle DCX$.
- (b) If BX = 1.5 cm, CX = 4.5 cm, and CD is 6 cm, find the length of AB.

In the figure, $\hat{CAB} = 90^{\circ}$, AB = 6 cm, BC = 10 cm and $AX \perp BC$.

- (a) Prove that $\triangle ABC$ is similar to $\triangle ABX$.
- (b) Hence, or otherwise, find the length of BX.

In the figure, AD ||BC, AX = DX and $A\hat{B}C = B\hat{C}D$.

- (a) Show that $\hat{ABD} = \hat{ACD}$.
- **(b)** Prove that $\Delta DAB \equiv \Delta ACD$.
- (c) Show that AB = DC.

In the diagram, ABCD is a quadrilateral. The diagonal AC bisects BD at right angles.

- (a) Prove that $\triangle ABX \equiv \triangle AXD$ and hence show that AC bisects $D\hat{A}B$.
- (b) Prove that DC = BC.

In the figure, ABCD is a parallelogram. BX = DY.

- (a) Prove that $\triangle ABX \equiv \triangle CDY$.
- (b) Hence show that AX = CY.
- (c) Prove that AXCY is a parallelogram.

In the figure, ABC is an isosceles triangle with base BC (i.e. AB = AC). X and Y are the midpoints of sides AB and AC respectively. Prove that $\Delta XBC \equiv \Delta YBC$.

In the figure, ABCD is a parallelogram. The side CD is produced to Eso that DC = ED.

- (a) Prove that $\triangle AED \equiv \triangle BDC$.
- (b) Prove that figure ABDE is a parallelogram.

24.

AB and BC are straight lines. XBZY is a parallelogram. ZC = ZY and AX = BX. The points A, Y and C lie on the same straight line.

- (a) Prove that $\triangle AXY \equiv \triangle CYZ$.
- (b) Prove that XBZY is a rhombus.

25.

In the figure, AC is the diagonal of the quadrilateral ABCD. BYDX is a parallelogram and AX = CY.

- (a) Prove that AB = DC and $AB \mid DC$.
- (b) Hence, prove that ABCD is a parallelogram. 🦟

SOLUTIONS TO EXERCISE 8

1. 125°

 $H\hat{G}D = 55^{\circ}$ (supplementary to $D\hat{G}F$) $E\hat{H}B = 55^{\circ}$ (corresponding to $H\hat{G}D$ and $AB \parallel CD$)

2.

 $\hat{ABC} = \hat{CAB} = 67^{\circ}$

(base angles of isosceles
$$\triangle ABC$$
)

 $B\hat{C}A = 46^{\circ}$

(angle sum of $\triangle ABC$)

∴ BĈA = 46°

3.

(a) Angle is a regular polygon = $\frac{(2n-4)\times90^{\circ}}{}$ For pentagon, n = 5

$$\therefore B\hat{C}D = \frac{(2 \times 5 - 4) \times 90^{\circ}}{5} = 108^{\circ}$$

(b) $ABC = 108^{\circ}$ (angle in a regular pentagon) $\hat{CBK} = (180 - 108)^{\circ}$ (supplementary to ABC) = 72°

 $\hat{ABD} = 50^{\circ}$ (base angle of isosceles $\triangle ABD$) (alternate to $A\hat{B}D$ and AB||DC) $\hat{CDB} = 50^{\circ}$ $D\hat{B}C = B\hat{C}D$ (base angles of isosceles ΔBCD) x + x + 50 = 180(angle sum of $\triangle BCD$) 2x = 130x = 65

(vertically opposite to \hat{FBD}) $\hat{ABC} = 52^{\circ}$ $B\hat{C}A = 52^{\circ}$ (base angle of isosceles $\triangle ABC$) $\hat{ACE} = (180 - 52)^{\circ}$ (supplementary to \hat{BCA}) = 128°

 $\hat{ACD} = \hat{DAC} = 30^{\circ}$ (base angles of isosceles ΔDAC) $B\hat{D}C = 60^{\circ}$ (exterior angle of ΔDAC) $D\hat{C}B = B\hat{D}C = 60^{\circ}$ (base angles of isosceles ΔBDC)

 $\hat{CBD} = 60^{\circ}$

(angle sum of $\triangle CBD$)

Construct a line MK parallel to AB through E. AB||CD, MK||AB :: MK||CD

 $\hat{MEA} = 42^{\circ}$ (alternate to \hat{ABE} and $\hat{AB} | MK$)

 $M\hat{E}A + C\hat{E}M = 110^{\circ}$ $42^{\circ} + C\hat{E}M = 110^{\circ}$ $\hat{CEM} = 68^{\circ}$

> $E\hat{C}D = 68^{\circ}$ (alternate to $C\hat{E}M$ and MK||CD) $x = 68^{\circ}$

 $\hat{ABC} = 60^{\circ}$ (angle in equilateral Δ) $\hat{ABC} + \hat{CBE} + \hat{EBD} = 180^{\circ}$ (A. B and D are collinear) 60+90+x=180x = 30

(supplementary to $D\hat{E}B$) (exterior angle of $\triangle AED$) 110

(b)
$$C\hat{D}E = 4x^{\circ} = (4 \times 35)^{\circ} = 140^{\circ}$$

 $B\hat{C}D = x^{\circ} = 35^{\circ}$
 $A\hat{B}C + B\hat{C}D + C\hat{D}E + D\hat{E}B = 360^{\circ}$
(angle sum of quadrilateral EBCD)
 $\therefore A\hat{B}C + 35^{\circ} + 140^{\circ} + 110^{\circ} = 360^{\circ}$

 $\therefore A\hat{B}C = 75^{\circ}$

10. $C\hat{D}E = 70^{\circ}$ (supplementary to $E\hat{D}B$) $D\hat{E}C = 84^{\circ}$ (supplementary to $C\hat{E}F$) $D\hat{C}A = 154^{\circ}$ (exterior angle of ΔCDE) $A\hat{B}C + 150^{\circ} + 8^{\circ} = 180^{\circ}$ (angle sum of ΔABC) $A\hat{B}C = 22^{\circ}$ $A\hat{B}C = 22^{\circ}$

11. (a) · A F E 42° 58° E 100° X B 58° | L C D

(ii)
$$F\hat{B}C = 58^{\circ}$$
 (alternate to $B\hat{F}A$ and $AE \parallel BC$)
$$C\hat{A}B = 42^{\circ}$$
 (base angles of isosceles $\triangle ABC$)
$$F\hat{A}B + A\hat{B}C = 180^{\circ}$$
 (cointerior angles and $AE \parallel BC$)
$$\therefore 42^{\circ} + 42^{\circ} + A\hat{B}F + 58^{\circ} = 180^{\circ}$$

$$\therefore A\hat{B}F = 38^{\circ}$$

12. (a) $F \hat{A}B = \text{angle in a regular hexagon}$ $= \frac{(2n-4)\times 90^{\circ}}{n}, \text{ where } n = 6$ $= \frac{(2\times 6-4)\times 90^{\circ}}{6} = 120^{\circ}$

(b) $\hat{CBG} = 60^{\circ}$ (exterior angle of hexagon) $\hat{GCB} = 60^{\circ}$ (exterior angle of hexagon) $\hat{CGI} = 120^{\circ}$ (exterior angle of ΔCBG) $\hat{GHJ} = 120^{\circ}$ (corresponding to \hat{CGI} and $\hat{GI} \parallel HJ$)

 $\triangle ABC$ is isosceles, where AB = AC. $D\hat{A}B = C\hat{A}E$ Aim Prove that $\triangle ADE$ is isosceles. Proof Let $C\hat{A}E = x^{\circ}$ \therefore $D\hat{A}B = x^{\circ}$ (data) Let $B\hat{C}A = y^{\circ}$ \therefore $A\hat{B}C = y^{\circ}$ (base angles of isosceles $\triangle ABC$) $A\hat{D}E = (x+y)^{\circ}$ (exterior angle of $\triangle ABD$)

 $\hat{ADE} = (x + y)^{\circ}$ (exterior angle of $\triangle ABD$) $\hat{DEA} = (x + y)^{\circ}$ (exterior angle of $\triangle AEC$) $\therefore \hat{ADE} = \hat{DEA} = (x + y)^{\circ}$

 $\therefore \triangle ADE$ is isosceles (base angles are equal).

14. C A x° B E x° x° B

Data

 $\triangle ABC$ is isosceles, where AB=CB and BE bisects $C\hat{B}D$.

Aim

To prove that $AC \mid BE$.

Proof Let $\hat{CAB} = x^{\circ}$

 $\therefore B\hat{C}A = x^{\circ} \quad \text{(base angles of isosceles } \Delta ABC\text{)}$

 $\hat{CBD} = 2x^{\circ}$ (exterior angles of $\triangle ABC$)

 $\hat{CBE} = \hat{EBD} = x^{\circ}$ (\hat{BE} bisects \hat{CBD})

 $\hat{CAB} = \hat{EBD} \pmod{x^\circ}$

: AC BE (ap

(a pair of corresponding angles $[\hat{CAB}]$ and $[\hat{EBD}]$ are equal)

15. A
60° 30°

B
60° 30°

C

Data

 $\triangle ABC$ is equilateral and $\triangle ACD$ is isosceles.

Aim

To prove $AB \perp AD$.

Proof

 $\hat{ABC} = \hat{CAB} = 60^{\circ}$ (angles in equilateral ΔABC)

 $\hat{ACD} = 120^{\circ}$

(exterior angle of $\triangle ABC$)

 $\hat{DAC} = \hat{CDA} = 30^{\circ}$ (base angles of isosceles ΔACD)

 $D\hat{A}B = 60^{\circ} + 30^{\circ} = 90^{\circ}$, i.e. $AB \perp AD$

(a) Data AC || DE, BE = x cm, EC = 14 cm, BD = 15 cm and DA = 21 cm

Aim To prove $\triangle ABC \parallel \triangle DBE$.

Proof In A's BED and BCA

 $D\hat{B}E = A\hat{B}C$

(common to both triangles)

 $E\hat{D}B = C\hat{A}B$

(corresponding angles and AC || DE)

 $\therefore \Delta BED \Delta BCA$ (equiangular)

(b) As $\triangle BED \parallel \triangle BCA$,

 $\frac{BE}{BC} = \frac{BD}{BA}$

(corresponding sides of similar triangles are in the same ratio)

 $\frac{x}{15}$

x+14=36

 $\therefore \frac{x}{x+14} = \frac{5}{12}$

x + 14 = 12 .12x = 5(x + 14)

12x = 5x + 70

7x = 70

x=10

: the length of BE is 10 cm.

(a) Data

Aim Prove that $\triangle ABX \parallel \triangle DCX$.

Proof In Δ 's ABX and DCX

$$B\hat{X}A = C\hat{X}D$$
 (vertically opposite angles)
 $X\hat{A}B = X\hat{D}C$ (alternate angles and $AB \parallel CD$)

 $\therefore \Delta ABX ||| \Delta DCX$ (equiangular)

(b) As
$$\triangle ABX \parallel \triangle DCX$$
,
$$\frac{AB}{CD} = \frac{BX}{CX}$$
 (corresponding sides of similar triangles are in the same ratio)

$$\therefore \text{ since } CD = 6 \text{ cm}, BX = 1.5 \text{ cm and } CX = 4.5 \text{ cm},$$

$$\text{then } \frac{AB}{6} = \frac{1.5}{4.5} \implies AB = \frac{1.5}{4.5} \times 6 = 2$$

: the length of AB is 2 cm.

 $AX \perp BC$, (i.e. $A\hat{X}C = 90^{\circ}$) and $C\hat{A}B = 90^{\circ}$ (a) Data

Aim To prove that $\triangle ABC \| \triangle ABX$

Proof In A's ABC and ABX $\hat{CAB} = B\hat{X}A = 90^{\circ} \text{ (data)}$

> $\hat{ABC} = \hat{ABX}$ (common to both triangles)

: ΔABC ΔABX (triangles ABC and ABX are equiangular)

As $\triangle ABC \triangle ABX$, **(b)** (corresponding sides in similar triangles are in the same ratio)

> \therefore since AB = 6 cm, BC = 10 cm, then $\frac{BX}{6} = \frac{6}{10} \implies BX = \frac{6}{10} \times 6 = 3.6$

: the length of BX is 3.6 cm.

19. (a)

Let $X\widehat{D}A = x^{\circ}$, $D\widehat{A}X = x^{\circ}$ (base angles of isosceles $\triangle AXD$)

 $D\hat{B}C = x^{\circ}$ (alternate angles and AD||BC)

Also $B\hat{C}A = x^{\circ}$ (alternate angles and AD ||BC)

It was given that $A\hat{B}C = B\hat{C}D$

 $A\hat{B}D + D\hat{B}C = B\hat{C}A + A\hat{C}D$

 $A\hat{B}D + x^{\circ} = x^{\circ} + A\hat{C}D$

 $A\hat{B}D = A\hat{C}D$

(b)

:.

Data In the figure $AD \mid BC$, AX = DX and ABC = BCD.

Aim To prove $\Delta DAB \equiv \Delta ACD$.

Proof

In Δ 's DAB and ACD

 $B\hat{D}A = D\hat{A}C$ (A) (base angles of isosceles ΔDAX)

 $A\hat{B}D = A\hat{C}D$ (A) (proved in part a)

AD = AD(S) (common to both triangles)

 $\therefore \Delta DAB \equiv \Delta ACD$ (AAS)

(c) AB = DC

(a pair of corresponding sides in congruent triangles DAB and ACD).

(a) Data

In the figure, ABCD is a quadrilateral where the diagonal AC bisects BD at right angles.

Aim To prove $\triangle ABX \equiv \triangle AXD$.

Proof

In Δ 's ABX and AXD.

BX = DX (S) (AC bisects BD)

 $B\hat{X}A = D\hat{X}A$ (A) (AC bisects BD at right angles)

AX = AX (S) (common to both triangles)

 $\therefore \Delta ABX \equiv \Delta AXD$

 $B\hat{A}X = D\hat{A}X$ (corresponding angles in

congruent triangles ABX and AXD) \therefore AC bisects $D\hat{A}B$, since $D\hat{A}B = B\hat{A}X + D\hat{A}X$

and $B\hat{A}X = D\hat{A}X$

(b) To prove that DC = BC, prove that $\Delta BCX \equiv \Delta DXC$ and then deduce the required result.

In Δ 's BCX and DXC.

BX = DX (S) (AC bisects BD) •

 $\hat{CXB} = \hat{DXC}$ (A) (AC bisects BD at right angles)

CX = CX (S) (common to both triangles)

 $\therefore \ \Delta BCX \equiv \Delta DXC$

(SAS)

DC = BC

(corresponding sides in congruent triangles BCX and DXC)

21. (a) Data

In the figure, ABCD is a parallelogram and BX = DY.

Aim

To prove $\triangle ABX \equiv \triangle CDY$

Proof

In Δ 's ABX and CDY,

- AB = DC (S) (opposite sides of a parallelogram) $A\hat{B}X = C\hat{D}Y$ (A) (opposite angles of a parallelogram)
- BX = DY (S) (given) $\therefore \Delta ABX \equiv \Delta CDY$ (SAS)
- (b) AX = CY (corresponding sides in congruent Δ 's ABX and CDY).

(c)
$$BC = AD$$
 (opposite sides of a parallelogram)
 $\therefore BX + CX = DY + AY$, but $BX = DY$
 $\therefore CX = AY$

Figure AXCY is a parallelogram because both pairs of opposite sides are equal, i.e. AX = CY and CX = AY.

22.

(a) Data ABC is an isosceles triangle, AB = AC. X and Y are the midpoints of sides AB and AC respectively.

Aim To prove $\Delta XBC \equiv \Delta YBC$.

Proof In Δ 's XBC and YBC.

BX = CY (AB = AC and X and Y are the midpoints of AB and AE respectively)

 $X\hat{B}C = B\hat{C}Y$ (given in data) BC = BC (common to both triangles)

 $\therefore \Delta XBC \equiv \Delta YBC \quad (SAS)$

23.

(a) Data In the figure, ABCD is a parallelogram. CD is produced to E so that DC = ED.

Aim To prove $\triangle AED \equiv \triangle BDC$.

Proof

In \triangle 's AED and BDC.

AD = BC (S) (opposite sides of parallelogram)

 $\hat{ADE} = \hat{BCD}$ (A) (corresponding angles, $\hat{CB} | AD$)

DE = DC (S) (given in data)

 $\therefore \Delta AED \equiv \Delta BDC \qquad (SAS)$

(b) AB = CD (opposite sides of a parallelogram), but CD = DE
 ∴ AB = DE. Figure ABDE is a parallelogram, since a pair of opposite sides (AB = DE and AB || DE) is both parallel and equal.

(a) Data In the figure, XBZY is a parallelogram, ZC = ZY, AX = BX and points A, Y and C are collinear.

Aim To prove that $\triangle AXY \equiv \triangle CYZ$.

Proof

 $X\hat{B}Z = Y\hat{Z}C$ (corresponding angles and XB||YZ) $X\hat{B}Z = A\hat{X}Y$ (corresponding angles and XY||BZ)

 $\therefore \hat{YZC} = \hat{AXY} \quad \text{(both equal to } \angle XBZ\text{)}$

 $X\hat{Y}A = Y\hat{C}Z$ (corresponding angles and $XY \parallel BZ$)

XB = YZ (opposite sides of a parallelogram)

but AX = XB, AX = YZ

In \triangle 's AXY and CYZ,

 $A\hat{X}Y = Y\hat{Z}C$ (S) (proved above)

 $X\hat{Y}A = Z\hat{C}Y$ (A) (proved above)

AX = YZ (S) (proved above)

 $\therefore \Delta AXY \equiv \Delta CYZ \qquad (AAS)$

(b) XY = ZC (corresponding sides in congruent Δ 's AXY and CYZ) But ZY = ZC $\therefore XY = ZY$.

XBZY is a parallelogram with a pair of adjacent sides equal, i.e. XY= ZY (and therefore all sides are equal), so XBZY is a rhombus.

25.

(a) Data In the figure, AC is the diagonal of ABCD. BYDX is a parallelogram and AX = CY.

Aim To prove that AB = DC and $AB \parallel DC$.

(b) ABCD is a parallelogram since a pair of opposite sides are equal and parallel, i.e. AB = DC and AB DC

Proof

 $Y\hat{X}B = X\hat{Y}D = x^{\circ}$ (alternate angles and BX || YD)

 $B\hat{X}A = (180 - x)^{\circ}$ (supplementary to $Y\hat{X}B$)

 $D\hat{Y}C = (180 - x)^{\circ}$ (supplementary to $X\hat{Y}D$)

 \therefore $B\hat{X}A = D\hat{Y}C$

In \triangle 's ABX and CDY,

AX = CY (S) (given in data)

 $B\hat{X}A = D\hat{Y}C$ (A) (proved above)

BX = DY (S) (opposite sides of parallelogram BYDX)

 $\therefore \Delta ABX \equiv \Delta CDY \qquad (SAS)$

AB = DC (corresponding sides in congruent Δ 's)

also $\hat{XAB} = \hat{YCD}$ (corresponding angles in congruent Δ 's)

:. $AB \parallel DC$ (a pair of alternate angles $X\widehat{A}B$ and $Y\widehat{C}D$ are equal)