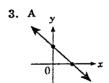
South Sydney High School

FUNCTIONS

3 Unit Worksheet

EXERCISE 2: EXAMINATION-TYPE QUESTIONS

- 1. For the function $f(x) = 5 2x^2$, find:
 - (a) f(0)
- **(b)** f(1) + f(-2)
- (c) f(b+1)
- (d) For what values of k is f(k) = -11?
- 2. A function g(x) is given by $g(x) = 2x^2 + 3x 2$.
 - (a) Evaluate:
- (i) g(3)
- (ii) g(-2)
- (iii) g(a)
- (iv) g(x + 1)
- (b) For what values of x is: (i) g(x) = 0?
- (ii) $g(x) < 2x^2 + 1$?



- (a) Match each of the above graphs A to H with its equation.
 - (i) $y = 2x^2 1$ (ii) $y = 5^x$
- (iii) $y = x^3$

- (iv) $y = \frac{-2}{x}$ (vii) 2x + y = 3
- (v) $y = \sqrt{5-x^2}$ (vi) $x^2 + y^2 = 4$
- (viii) y = |x-2|
- (b) Which of the above graphs do not represent functions?
- 4. Sketch the following functions, showing all critical points. State the domain and range in each case.

- (a) $y = \sqrt{4 x^2}$ (b) $y = \frac{2}{x + 1}$ (c) y = |x + 2| (d) $y = -\sqrt{9 x^2}$ (e) $y = \sqrt{4 x}$ 5. (a) A function, g(x) is defined by $g(x) = \begin{cases} x+2 & \text{for } x \le -1 \\ 1 & \text{for } -1 < x \le 1 \\ 2-x & \text{for } x > 1 \end{cases}$
 - Evaluate: (i) $g(-4)+2g\left(\frac{1}{2}\right)-g(5)$ (ii) $g(\alpha)$ if $-1<\alpha\leq 1$
 - (b) A function, f(x) is defined by $f(x) = \begin{cases} x^2 & \text{for } -2 \le x \le 1\\ 4-3x & \text{for } 1 < x \le 2 \end{cases}$
 - (i) Sketch the function.
- (ii) Evaluate $f(-1) + f\left(1\frac{1}{2}\right)$
 - (iii) State the domain and range of the function.
 - (iv) In what domain is the function increasing?
- 6. A function is defined as $f(x) = \begin{cases} x^2 & \text{for } -2 \le x \le 1\\ 3-2x & \text{for } 1 < x \le 4 \end{cases}$
 - (a) Sketch the function y = f(x). (b) Evaluate f(-1) + f(3)
 - (c) What is the domain and range of the function?
 - (d) In the domain $-2 \le x < 0$ is the function increasing or decreasing?

7. A function f(x) is even if f(-x) = f(x) for all values of x in the domain. A function f(x) is odd if f(-x) = -f(x) for all values of x in the domain. For each of the following functions state whether they are even, odd, or neither:

(a) $f(x) = 2x^2$

(d) $f(x) = 2x^3$

(b) $f(x) = x^3 - 3$ (c) $f(x) = \frac{x^2}{x^2 + 1}$ (e) $f(x) = \frac{x}{x^2 - 1}$

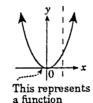
- 8. A function f(x) is defined by $f(x) = \frac{2}{x^2 + 1}$.
 - (a) Evaluate f(0).
 - (b) What value does y = f(x) approach as $x \to \infty$?
 - (c) Show that y = f(x) is an even function.
 - (d) Draw a neat sketch of the function $f(x) = \frac{2}{x^2 + 1}$
- 9. (a) Sketch the function $y = x^3$, $0 \le x \le 2$, and write down its range in the given domain.
 - (b) If y in (a) is part of an even function f(x) defined for $-2 \le x \le 2$, sketch on a new diagram the function f(x).
- 10. (a) Sketch the function $y = x^2 + 1$, $0 \le x \le 2$, and write down its range in the given domain.
 - (b) If y in (a) is part of an even function g(x) defined for $-2 \le x \le 2$, sketch on a new diagram the function g(x).
- 11. On the same graph, sketch the region where the inequalities x+3y<-6, $x\leq 1$ and $y\geq -3$ hold simultaneously.
- 12. For the parabola $y = x^2 4x$:
 - (a) Find the x and y intercepts.
 - (b) Find the coordinates of the vertex.
 - (c) Draw a neat sketch, showing all critical points.
 - (d) State its domain and range.
 - (e) State if curve represents a function.
 - (f) Over what domain is it decreasing?
 - (g) State the range of $y = x^2 4x$ in the domain $1 \le x \le 5$.
- 13. (a) On the same diagram sketch $y = x^2$ and y = |2x|.
 - (b) Show the points of intersection of the two curves on your sketch.
 - (c) Shade the region satisfied by $y \ge x^2$ and $y \le |2x|$.
- 14. (a) On same diagram sketch the relationships $y = 2x^2$ and y = 2 3x.
 - (b) Find where the above curves intersect and label these points on your sketch.
 - (c) Indicate on your diagram by shading, the region of the number plane determined by those points which satisfy all the inequalities y < 2-3x, $y \ge 2x^2$ and $x \ge -1$.
- 15. (a) What is the equation of the locus of a point which moves such that its distance from the origin is 3 units? What does it represent geometrically?
 - (b) Write down the equation of a circle with centre (2, -3) and radius 5 units.
 - (c) Draw a clear sketch of the region whose points (x, y) satisfy all three inequalities: $x^2 + y^2 \le 9$, y > x, $x \le 0$
- 16. A point P(x, y) moves so that it is always 4 units from the point (1, -2). What is the equation of the locus of P?
- 17. Find the centre and radius of the following circles: (a) $x^2 + (y-2)^2 = 9$ (b) $(x-2)^2 + y^2 = 4$ (c) $(x+1)^2 + (y-2)^2 = 5$
- 18. By completing the square, show that $x^2 + y^2 + 2x 6y 1 = 0$ represents a circle Find its centre and radius.

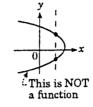
EXERCISE 2: WORKED SOLUTIONS

- 1. $f(x) = 5 2x^2$
 - (a) $f(0) = 5 2(0)^2 = 5$
 - (b) f(1)+f(-2)= $(5-2)+(5-2\times4)$ = (3)+(-3)
 - (c) f(b+1)= $5-2(b+1)^2$ = $5-2(b^2+2b+1)$ = $5-2b^2-4b-2$ = $3-2b^2-4b$
 - (d) f(k) = -11 $\Rightarrow 5 - 2k^2 = -11$ $\Rightarrow -2k^2 = -16$ $\Rightarrow k^2 = 8$ $\Rightarrow k = \pm \sqrt{8}$ $\therefore k = \pm 2\sqrt{2}$
- 2. (a) $g(x) = 2x^2 + 3x 2$ (i) $g(3) = 2(3^2) + 3(3) - 2$ = 18 + 9 - 2 = 25
 - (ii) g(-2)= $2(-2)^2 + 3(-2) - 2$ = 8 - 6 - 2= 0
 - (iii) $g(a) = 2a^2 + 3a 2$
 - (iv) g(x + 1)= $2(x + 1)^2 + 3(x + 1) - 2$ = $2(x^2 + 2x + 1) + 3x + 3 - 2$ = $2x^2 + 4x + 2 + 3x + 3 - 2$ = $2x^2 + 7x + 3$
- (b) (i) g(x) = 0 $\Rightarrow 2x^2 + 3x - 2 = 0$ $\Rightarrow (2x - 1)(x + 2) = 0$ $\Rightarrow x = \frac{1}{2} \text{ or } -2$
 - (ii) $g(x) < 2x^2 + 1$ $\Rightarrow 2x^2 + 3x - 2 < 2x^2 + 1$ $\Rightarrow 3x < 3$ $\Rightarrow x < 1$
- 3. (a) (i) C (ii) F (iii) D (iv) E (v) G (vi) B (vii) A (viii) H

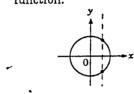
(b) Note A graph of a relationship represents a function if any vertical line only cuts the graph once (and once only).

For example:

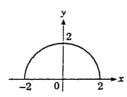




.: from all the graphs in 3(a), only B doesn't represent a function.



4. (a) $y = \sqrt{4 - x^2}$ represents a semi-circle, above the x axis, of radius 2 units and centre 0.

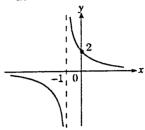


Domain = $\{x: -2 \le x \le 2\}$ Range = $\{y: 0 \le y \le 2\}$

Note The domain of a function is the possible x values and the range is the possible y values.

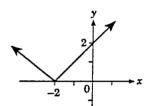
.: for $y = \sqrt{4 - x^2}$ there are possible real values for y only when $4 - x^2 \ge 0$, that is, $-2 \le x \le 2$, .: the range for $y = \sqrt{4 - x^2}$ is $-2 \le x \le 2$.

The possible real values for y in the domain $-2 \le x \le 2$ are $0 \le y \le 2$ for $y = \sqrt{4 - x^2}$. This is called the range. \therefore the domain for $y = \sqrt{4 - x^2}$ is $0 \le y \le 2$. (b) $y = \frac{2}{x+1}$ represents a hyperbola with asymptote at x = -1.



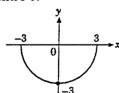
Domain = $\{x: x \in \mathbf{R}, x \neq -1\}$ Range = $\{y: y \in \mathbf{R}, y \neq 0\}$

(c) y = |x+2| implies y = x+2 for x+2 > 0 and y = -(x+2) for x+2 < 0, that is, $y = \begin{cases} x+2 & \text{for } x \ge -2 \\ -x-2 & \text{for } x < -2 \end{cases}$



Domain = $\{x : x \in \mathbb{R}\}$ Range = $\{y : y \ge 0\}$

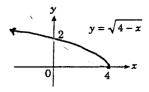
(d) $y = -\sqrt{9-x^2}$ represents a semi-circle, below the x axis, of radius 3 and centre 0.



Domain = $\{x: -3 \le x \le 3\}$ Range = $\{y: -3 \le y \le 0\}$

(e) $y = \sqrt{4-x}$

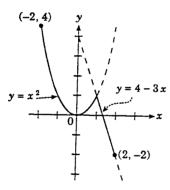
For this function there are possible values for y only when $4-x \ge 0$, that is $x \le 4$.



Domain =
$$\{x : x \le 4\}$$

Range = $\{y : y \ge 0\}$

- 5. (a) g(x) $=\begin{cases} x+2 & \text{for } x \le -1 \\ 1 & \text{for } -1 < x \le 1 \\ 2-x & \text{for } x > 1 \end{cases}$
 - (i) $g(-4) + 2g\left(\frac{1}{2}\right) g(5)$ = (-4+2) + 2[1] - (2-5)x+2= -2 + 2 - (-3)= 3
 - (ii) Now $-1 < \alpha \le 1$ $\therefore g(\alpha) = 1$
 - (b) f(x)= $\begin{cases} x^2 & \text{for } -2 \le x \le 1\\ 4 - 3x & \text{for } 1 < x \le 2 \end{cases}$
 - (i) This function has domain $-2 \le x \le 2$ but 2 different relationships, that is $f(x) = x^2$ for $-2 \le x \le 1$ and f(x) = 4 3x for $1 < x \le 2$.



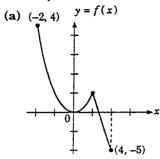
- (ii) $f(-1) + f\left(1\frac{1}{2}\right)$ = $(-1)^2 + \left(4 - 3 \times 1\frac{1}{2}\right)$ = $1 - \frac{1}{2} = \frac{1}{2}$
- (iii) Domain = $\{x: -2 \le x \le 2\}$ Range = $\{y: -2 \le y \le 4\}$
- (iv) Note A function is increasing from a to b if as x increases from a to b, f(x) also increases from a to b (where graph rises).

From the graph in (i), the function f(x)

$$= \begin{cases} x^2 & \text{for } -2 \le x \le 1\\ 4 - 3x & \text{for } 1 < x \le 2 \end{cases}$$

increases in the domain 0 < x < 1.

6.
$$f(x) = \begin{cases} x^2 & \text{for } -2 \le x \le 1\\ 3 - 2x & \text{for } 1 < x \le 4 \end{cases}$$



- (b) f(-1)+f(3)= $(-1)^2+(3-2\times3)$ = 1-3= -2
- (c) Domain = $\{x : -2 \le x \le 4\}$ Range = $\{y : -5 \le y \le 4\}$
- (d) In the domain $-2 \le x < 0$ the function is **decreasing** because as x increases from -2 to 0, f(x) decreases (from 4 to 0).

7. (a)
$$f(x) = 2x^{2}$$
$$f(-x) = 2(-x)^{2}$$
$$= 2x^{2}$$
$$f(x) = f(-x)$$
$$\therefore \text{ even function}$$

(b)
$$f(x) = x^3 - 3$$

 $f(-x) = (-x)^3 - 3$
 $= -x^3 - 3$
 $-f(x) = -[x^3 - 3]$
 $= -x^3 + 3$

∴ neither

(c)
$$f(x) = \frac{x^2}{x^2 + 1}$$
$$f(-x) = \frac{(-x)^2}{(-x)^2 + 1}$$
$$= \frac{x^2}{x^2 + 1}$$
$$f(x) = f(-x)$$

.. even function

(d)
$$f(x) = 2x^3$$

 $f(-x) = 2(-x)^3$
 $= -2x^3$
 $-f(x) = -(2x^3)$
 $= -2x^3$
 $f(-x) = -f(x)$

: odd function

(e)
$$f(x) = \frac{x}{x^2 - 1}$$
$$f(-x) = \frac{-x}{(-x)^2 - 1}$$
$$= \frac{-x}{x^2 - 1}$$
$$-f(x) = -\left[\frac{x}{x^2 - 1}\right]$$
$$= \frac{-x}{x^2 - 1}$$
$$f(-x) = -f(x)$$

. odd function

8.
$$f(x) = \frac{2}{x^2 + 1}$$

(a) $f(0) = \frac{2}{0^2 + 1} = 2$

(b) As
$$x \to \infty$$
,

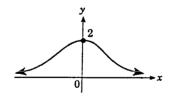
$$f(x) = \frac{2}{x^2 + 1} \to 0$$

(c)
$$f(-x) = \frac{2}{(-x)^2 + 1} = \frac{2}{x^2 + 1}$$

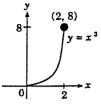
 $f(x) = f(-x)$

$$\therefore y = f(x) \text{ is even}$$

(d) Note
$$x \to \infty$$
, $f(x) \to 0$
 $\therefore f(x) = 0$
is an asymptote for the graph $y = f(x)$.



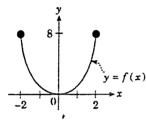
9. (a)



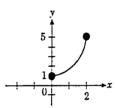
Domain = $\{x: 0 \le x \le 2\}$ Range = $\{y: 0 \le y \le 8\}$

(b) Note The graph of an even function is symmetric with respect to reflection in the y axis, that is, it has line symmetry about the y axis.

Thus, to complete the sketch, reflect the curve in (a) about the y axis.



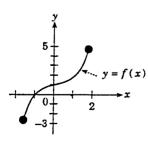
10. (a)



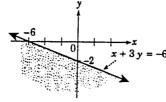
Domain = $\{x: 0 \le x \le 2\}$ Range = $\{y: 1 \le y \le 5\}$

(b) Note The graph of an odd function is symmetric with respect to reflection in the point 0 (the origin), that is, it has point symmetry about the origin.

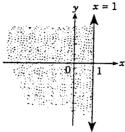
Thus, to complete the sketch, rotate the curve in (a) about 0 by 180°.



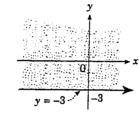
11.



The region x+3y<-6 is the set of all points to the left of but not on the line x+3y=-6.

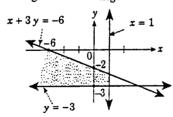


The region $x \le 1$ is the set of all points to the left of and on the line x = 1.



The region $y \ge -3$ is the set of all points to the left of and on the line y = -3.

The graph of the region where all three inequalities x+3y<-6, $x\leq 1$ and $y\geq -3$ hold simultaneously is the intersection of all the above three regions, as shown in the diagram following:



Note

- (1) If the inequality sign is < or > then the line or curve is broken:
- (2) If the inequality sign is ≤ or ≥ then the line or curve is continuous:

12. $y = x^2 - 4x$ represents a parabola.

Note Any equation of the form $y = ax^2 + bx + c$, $a \ne 0$ represents a parabola.

(a) x intercept(s) is the point(s) where the parabola cuts (intersects) the x axis.This occurs when y = 0.

$$y = x^{2} - 4x$$
If $y = 0 \Rightarrow x^{2} - 4x = 0$

$$\Rightarrow x(x - 4) = 0$$

$$\Rightarrow x = 0 \text{ or } 4$$

y intercept(s) is the point(s) where the parabola cuts (intersects) the y axis. This occurs when x = 0.

$$y = x^{2} - 4x$$
If $x = 0 \Rightarrow y = 0^{2} - 4 \times 0$

$$\Rightarrow = 0$$

(b) The vertex (or turning point) of any parabola is the point where $x = -\frac{b}{2a}$ (on the axis of the parabola).

For
$$y = x^2 - 4$$

 $a = 1$, $b = -4$, $c = 0$

$$x = -\frac{b}{2a}$$

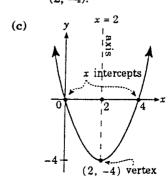
$$= -\frac{-4}{2 \times 1}$$

$$= --2$$

i.e. x = 2.

When
$$x = 2$$
, $y = x^2 - 4x$
= $2^2 - 4(2)$
= $4 - 8$

: the vertex is the point (2, -4).



- (d) For the parabola $y = x^2 - 4x$ Domain = $\{x : x \in \mathbb{R}\}$ Range = $\{y : y \ge -4\}$
- (e) From the graph of $y = x^2 4x$ it can be seen that any vertical line can only cut the graph once.

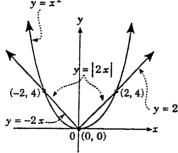
 Therefore, $y = x^2 4x$ represents a function.
- (f) The function $y = x^2 4x$ is decreasing in the domain $\{x: x < 2\}$ since y = f(x) decreases as x increases in that interval.

(g) y (5,5) 0 1 2 3 4 5 x $(1,-3)^1$ (2,-4)

The range of f(x)= $x^2 - 4x$ in the domain $1 \le x \le 5$ is $\{y: -4 \le y \le 5\}$ as seen from the above diagram.

13. (a) $y = x^2$ represents a parabola.

$$y = \begin{vmatrix} 2x \end{vmatrix} \Leftrightarrow y = \begin{cases} 2x & \text{for } x \ge 0 \\ -2x & \text{for } x < 0 \end{cases}$$



(b) For $x \ge 0$, y = 2x —0 and $y = x^2$ —2 Substitute $y = x^2$ into ①:

$$x^{2} = 2x$$

$$x^{2} - 2x = 0$$

$$x(x - 2) = 0$$

$$x = 0 \text{ or } 2$$

But $x \ge 0$, so x = 0 and x = 2 are both solutions. Substitute x = 0 into Φ : $y = 2 \times 0 = 0$ so (0, 0) is one point of intersection.

Substitute x = 2 into \oplus : $y = 2 \times 2 = 4$ so (2, 4) is another point of intersection.

For x < 0, y = -2x —①
and $y = x^2$ —②

Substitute $y = x^2$ into ①:

$$x^{2} = -2x$$

$$x^{2} + 2x = 0$$

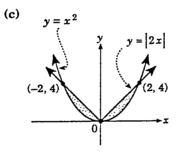
$$x(x+2) = 0$$

$$x = 0 \text{ or } -2$$

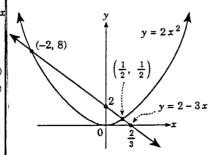
But x < 0, so x = -2 is the required solution.

Substitute x = -2 into Φ : $y = -2 \times -2 = 4$ so (-2, 4) is is also a point of intersection.

Therefore $y = x^2$ and y = |2x| intersect at three points, namely, (2, 4), (0, 0) and (-2, 4).



14. (a) The graph of $y = 2x^2$ is a parabola and y = 2-3x a straight line.



(b) To find the points of intersection of $y = 2x^2$ and y = 2 - 3x, solve the equations simultaneously.

$$y = 2x^2 \qquad -0$$

$$y = 2 - 3x \qquad -2$$

Substitute $y = 2x^2$ into ②:

$$2x^{2} = 2 - 3x$$

$$2x^{2} + 3x - 2 = 0$$

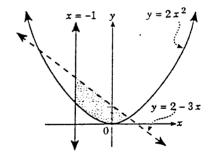
$$(2x - 1)(x + 2) = 0$$

$$\therefore x = \frac{1}{2} \text{ or } -2$$

Substitute $x = \frac{1}{2}$ into \mathfrak{D} : $y = 2 - 3 \times \frac{1}{2} = \frac{1}{2}$, so $\left(\frac{1}{2}, \frac{1}{2}\right)$ is one point of intersection.

Substitute x = -2 into \mathfrak{D} : $y = 2 - 3 \times -2 = 8$ so (-2, 8) is the other point of intersection. $\therefore y = 2x^2$ and y = 2 - 3xintersect at the points $\left(\frac{1}{2}, \frac{1}{2}\right)$ and (-2, 8).

(c) y < 2-3x, $y \ge 2x^2$ and $x \ge -1$.



15. (a) The equation of the locus of a point which moves so that its distance from the origin is 3 units is

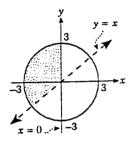
$$x^2 + y^2 = 9$$
.

Geometrically it represents a circle, (0, 0) and radius 3 units.

(b) Note The general equation of a circle is $(x-a)^2 + (y-b)^2 = r^2$ where (a, b) is the centre and r is the radius.

> Therefore, the equation of a circle with centre (2, -3) and radius of 5 units, is $(x-2)^2+(y+3)^2=25$.

(c) $x^2 + y^2 = 9$ represents a circle, centre (0, 0) and radius 3 units.



16. Note The locus of a point which moves so that its distance from a fixed point is a constant represents a circle.

> Therefore, if a point moves so that it is always 4 units from the point (1, -2) its equation is $(x-1)^2 + (y+2)^2 = 16$.

- 17. (a) centre (0, 2), radius = 3 units
 - (b) centre (2, 0), radius = 2 units
 - (c) centre (-1, 2), radius = $\sqrt{5}$

18. $x^2 + y^2 + 2x - 6y - 1 = 0$ $x^2 + 2x + y^2 - 6y = 1$

> By completing the square on both $x^2 + 2x$ and $y^2 - 6y$: $x^2 + 2x + y^2 - 6y = 1$

$$x^{2} + 2x + (1)^{2} + y^{2} - 6y + (-3)^{2}$$

= 1 + (1)² + (-3)²

 $\therefore (x+1)^2 + (y-3)^2 = 1 + 1 + 9$

which represents a circle centre (-1, 3) and radius $\sqrt{11}$ units.