
South Sydney High School LOCUS PROBLEMS 3 Unit Worksheet

- 1. C(1,-3) is a point on a number plane. The point P(x,y) moves on the plane so that the length of the interval CP remains 2 units. What is the equation of the locus of P?
- 2. A(4,0) and B(0,5) are points on a number plane. The point P(x,y) moves on the plane so as to remain equidistant from A and B. Show that the locus of P is a straight line and that this line
 - (a) contains the mid-point of AB
 - (b) is perpendicular to AB.
- 3. The variable point P(x,y) moves on a number plane so that its distance from A(4,0) is twice its distance from B(1,0). Show that the locus of P is a circle and state its centre and radius.

4.

B is the point (0,3), the gradient of BP is m and the gradient of OP is 2m

- (a) Write down the equations of the lines BP and OP.
- (b) Find the co-ordinates of P.
- (c) Describe the locus of P as the value of m varies.
- 5. R is the point (0,4). The point P moves on the number plane so that its distance from R is equal to its distance from the x axis. Find the equation of the locus of P and describe its shape.
- 6. L(0,4) and N(6,0) are points on a number plane. The variable point M moves on the plane so that ML and MN remain perpendicular. Find the equation of the locus of M, prove that it is a circle and state its centre and radius.

- 7. The point P moves on a number plane so that $PA = \sqrt{2} PB$ where A is (-3,0) and B is (0,1). Show that the locus of P is a circle, find the co-ordinates of its centre, C and show that A, B and C are collinear.
 - 8. A point moves on a number plane so that its distance from the point (0,3) is equal to its perpendicular distance from the line y = -3. Determine the equation of the locus of the point.
- † 9. (a) What is the perpendicular distance between the point (x,y) and the line x + y 1 = 0?
 - (b) S is the point (1,1).P moves on the plane so that PS is $\sqrt{2}$ times the perpendicular distance between P and the line x + y 1 = 0. Find, in simplest form, the equation of the locus of P.

† 10.

F(0,a) is the centre of a fixed circle which touches the x axis at the origin. P is the centre of a variable circle that touches both the fixed circle and the x axis. Find the equation of the locus of P.

- † 11. A(a,0) and B($0,\frac{b}{k}$) are points on a number plane with a,b and k positive.
 - (a) Write down the co-ordinates of P, the point dividing AB in the ratio k:1
 - (b) Show that, as k varies, P moves on the straight line

$$\frac{x}{a} = \frac{y}{b}$$

- (c) By considering the situation when
 - (i) k approaches zero
 - (ii) k increases without limit

determine the precise locus of P.

- **LOCUS** 1. $(x-1)^2 + (y+3)^2 = 4$ 2. 8x 10y + 9 = 0
- 3. Centre (0,0), radius 2.
- 4. (a) y = mx + 3, y = 2mx (b) $x = \frac{3}{2m}$, y = 3(c) The line y = 3
- 5. $8y = x^2 + 16$, parabola
- 6. $(x-3)^2 + (y-2)^2 = 13$, Centre (3,2) radius $\sqrt{13}$.
- 7. C(3,2) 8. $x^2 = 12y$
- 9. (a) $\frac{|x+y-1|}{\sqrt{2}}$ (b) 2xy = 1
- 10. $x^2 = 4ay$
- 11. (c) The interval between (0,0) and (a,b),