

South Sydney High School

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 3

HALF YEARLY

2004 MATHEMATICS EXTENSION 2

Time allowed – 1½ hour

Name:	

General Instructions

- o Write using blue or black pen
- All necessary working should be shown for every question
- Approved calculators may be used
- Begin each question on a new page clearly marked "Question 1", "Question 2"

- o Write your name on every sheet of paper handed in.
- Attempt all questions
- o All questions are of equal value

Total marks (60)

Question 1 (15 marks)

(i)

directrices.

(a) For the ellipse $\frac{x^2}{12} + \frac{y^2}{4} = 1$, find the eccentricity, the coordinates of the foci S and S' and the equation of the

4

Sketch the curve and indicate on your diagram the foci and the directrices.

2.

(b) Sketch the graph of $y = \cos^2 \frac{x}{2}$ from $0 \le x \le 4\pi$.

3

(c) The point $P(x_1, y_1)$ lies on the hyperbola of equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$

Find the equation of the normal at P.

2

(ii) The normal at P meets the x-axis at G, and N is the foot of the perpendicular from P to the x-axis.

1

Show that $NG: ON = b^2: a^2$, where O is the origin (0, 0).

Question 2 (15 marks) Begin a new page

- (a) Reduce the complex expression $\frac{(2-i)(8+3i)}{(3+i)}$ in the form a+ib, where a, b are real numbers
- (b) Find the radius and centre of the circle $x^2 + y^2 6x + 3y + 5 = 0$.
- (c) The point $R(x_1, y_1)$ lies on the curve with equation $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

 Find the equation of the tangent to the curve at the point R.
- (d) The point $P(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1.$
 - (i) Show that the equation of the tangent to the hyperbola at P is given by $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$
 - (ii) The tangent to the hyperbola at P meets the asymptotes at A and B. Prove that P is the midpoint of the interval AB.

Question 3 (15 marks) Begin a new page

(a) Show that $\sin x + \sin 3x = 2\sin 2x \cos x$.

3

(ii) Hence or otherwise, find all solutions of $\sin x + \sin 2x + \sin 3x = 0$ for $0 \le x \le 2\pi$.

4

(b) $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b > 0$.

The tangent and the normal at P cut the y-axis at A and B respectively, and S is the focus of the ellipse.

(i) Show that $\angle ASB = 90^{\circ}$.

5

(ii) Hence show that A, P, S and B are concyclic and state the location of the centre of the circle through A, P, S and B.

3 .

Question 4 (15 marks) Begin a new page

- (a) Show that the equation $\frac{x^2}{29-k} + \frac{y^2}{4-k} = 1$, where k is a real number, represents
 - (α) an ellipse if k < 4.

3

(β) a hyperbola if 4 < k < 29

2

(ii) Show that the foci of each ellipse in part (α) are independent of the value of k.

3

- (c) The polynomial $P(z) = z^4 + bz^2 + d$ has a double root α where b and d are real numbers and $d \neq 0$.
 - (i) Prove that P'(z) is an odd function.

2

(ii) Prove that $-\alpha$ is also a double root of P(z).

1

(iii) Prove that $d = \frac{b^2}{4}$.

2

(iv) For what values of b does P(z) have a double root equal to $\sqrt{3} i$.

1

(v) For what values of b does P(z) have real roots?

1