QUESTION 1

a) Which of these figures defines a function and which defines a relation which is not a function? (4 marks)

a

b.

C.

d.

- b) For the function f(x) = 2x 1, find the value of, f(-1), f(2) and $f(\frac{1}{4})$; (3 marks)
- c) For the function f(x) = |x I| find the value of f(2), f(-2) and f(0). (3 marks)

QUESTION 2

- a) The equation $y = 4x^2$ represents a relation between x and y in the XY-plane.
 - i. Find the value(s) of y when x = -1, 16. (2 marks)
 - ii. What is the largest possible domain for the variable x? (1 mark)
 - iv. Sketch the relation $y = 4x^2$. (3 marks)
- b) Find the domain and range of $y = \frac{I}{x+I}$. (2 marks)
- Find the domain and range of $y = \sqrt{4 x^2} \sqrt{x^2 4}$ (4 Marks)
- d) The following figures each define a function. Describe the domain of each function. (4 marks)

QUESTION 3

a) For the function $y = 2x - x^2$, complete the table below then sketch the function. (4 marks)

x	-2	-1	0	1	2	3	4
y							

- b) For the function $y = \frac{1}{x-3}$:
 - i. Complete the table below: (1 mark)

x	-1	0	1	2	2.5	2.9	3	3.5	3.5	4	5	6
y												

- ii. Can this function ever attain the value 0? Explain your answer. (2 marks)
- iii. Does this function have a value when x = 3? (1 mark)
- iv. Describe the behaviour of the function as x approaches 3 from 2. (1 mark)
- v. Sketch the function $y = \frac{1}{x-3}$. (3 marks)
- State whether the function $f(x) = x^4 + x^2 1$ is even, odd or neither. Prove. (3 marks)

QUESTION 4

- a) In the triangle shown, find:
 - a. $sin \theta$.
 - b. b. $\cos \theta$;
 - c. c. $tan \theta$ (3 marks)

- b) i. Calculate the exact length of BC. (1 mark)
 - ii. Find the value of $\cot \angle BAC$. (1 mark)

c) Find x (to 1 decimal place). (2 marks)

d) Find θ (to the nearest minute). (2 marks)

QUESTION 5

- a) A ladder 15 m long is inclined to a wall at an angle of 45°. How far up the wall does the ladder reach? Answer correct to 1 decimal place. (2 marks)
- A man on the same level as the base of 75 m high tower, observes the angle of elevation of the top of the tower to be 25°. After walking x metres towards the base of the tower, he then observes the angle of the elevation to be 38°. Find (to the nearest metre) the distance x metres between his first and second observation points. (3 marks)

From a plane flying at a constant altitude of $10\,000$ m, the angle of depression of two boats is observed. The angle of depression of boat A is $15\,^{\circ}10'$ and at the same instant the angle of depression of boat B is $12\,^{\circ}33'$. Find (to the nearest metre) the distance x between the two boats. (4 marks)

QUESTION 6

a) Write down the bearing of B from A. (1 mark)

b) Find the bearing of B from A (to the nearest degree). (2 marks)

c) A plane takes off and flies 250 km on a course bearing 345°. It then turns and flies 375 km on a course bearing 300°. Find how far the plane is then west of its starting position. Draw a diagram and give your answer to the nearest kilometre. (5 marks)

[[End Of Qns]]

I = I		
3H '04	YR 11	SOLUTIONS
AUR ASS	MATHEMATICS	
XVESTION 1 (10 marks	3)	
a) truction b) Relation	(b) $(c) = 2x - 1$	· -
c) Function	f(-1) = -3	
d) Kelation.	f(2) = 3	
	$f(\frac{1}{4}) = -\frac{1}{2}$	
$\int f(x) = x-1 $	- <u>-</u>	
f(2) = 1	-	
f(2) = 3		
f(0) = 1		
ESTION 2 (16 mas	-K3)	
1) $y=4x^2$ when $x=-1$ $y=4$	ii) Domain is	all real values
when $x = 16$ $y = 102$	(iii) (//	
") y= 1/x+1 c)	$y = \sqrt{4 - \chi^2} - \sqrt{\chi^2 - 4}$	
Domain Z = 1 Rango y = 0	Domain $x = \pm 2$ Range $u = 0$	•
$\sim \sim \sim \sim$	7	

La) Domain: all real values.

i) No.
v) y - x

c) $f(x) = x^{4} + x^{2} - 1$ $f(-x) = (-x)^{4} + (-x)^{2} - 1$ $f(-x) = x^{4} + x^{2} - 1$

fa) = f(x) Even Function

OVESTION 4 (9 marks) a) Sin O = 10 () Cos O = 10 () Tan O = \$ () b) i) Using Pythagoras' BC = 13 (1) ii) Gt LBAC = 13 (1) Sin 76 = 8.2 = 53°24' (2) 12 if not minutes ESTION 5 /9 marks Tan 38 = 75 Cos 45 = h M = 75 Tan 38 if Sin used y = 75 Ton 25 4 = 160.8m 44922m = a a-b=803 m 0

QUESTION 6 (8 marks) a) Bearing of B from A is 345°T of N 15°W b) NTand = $\frac{48}{36}$ $\Theta = 53^{\circ}$ Bearing is $037^{\circ}T$ of $N37^{\circ}E$ (2)

$$y = a + b$$

 $y = 64.7 + 324.8$
 $y = 389 \text{ km}$