SOUTH SYDNEY HIGH SCHOOL

Name:

2006

Year 11

/ HSC Assessment Task 1

Friday 2nd December

Mathematics

Weighting: 10%

Working time: 2 periods

Total marks: 48

Topics examined:

Tangent and the derivative Quadratic polynomial

Outcomes assessed:

Question	Mark	
1		_
2		
3		_
4	1	_
Bonus		
TOTAL		_

General Instructions:

- Write using blue or black pen
- Board-approved calculators and templates may be used
- All necessary working should be shown in every question
- Questions are of equal value
- Full marks may not be awarded for careless or badly arranged work
- Questions are not necessarily arranged in order of difficulty
- Begin each question on a new page
- There is a bonus question at the end of the paper (marks will be awarded for this question)

4	Question	1. (12 marks)	Mầt
]	Differenti	ate and simplify the following:	IVIAI.
- 6	a) 3:	$c^2 - 7x + 8$	1
* t) (5	$(-7x)^4$	1
* 0	(x	$(3-7x)(3x^2+12)$	2
≠ d	$\frac{3}{2}$	c-5 c+3	2
ζ e	(₹	$(x)^5$	2
⊢ f)	$\frac{1}{x_1}$	$\sqrt{\overline{x}}$	2
≠ g)	<u>5x</u>	$\frac{3+3x^2-4}{x}$	2
Q	uestion 2	(12 marks)	
(a)	н	$f(x) = \frac{3}{x} + x^4$, find $f'(2)$.	2
b)	For	$f(x) = x^3 + 2$, find the values of x for which $f'(x) = 1$.	2
c)	Fine	the equation, in general form, of the tangent to the parabola $y = \frac{1}{3}x^2$ at the point $\left(2, \frac{4}{3}\right)$.	3
(d)) A <u>ta</u>	ngent to the curve $y = 2x^3 - 2x + 3$, is parallel to the line $4x - y - 3 = 0$. Find the point of	4
		act. i.e where the curve and tangent intersect. Hence find the equation of this tangent.	
e)	Drav	v a possible graph of an increasing function indicating what you know about its derivative.	1
Qu	estion 3.	(12 marks)	
a)	Solv	the quadratic equation $8 + 2x - x^2 = 0$.	2
b)		a quadratic equation in x in expanded form whose roots are:	2 2
	(i)	3 and -5.	
	(ii)	$3+\sqrt{5}$ and $3-\sqrt{5}$.	
c)	Draw	on separate axes, a possible graph of the quadratic function $\dot{y} = ax^2 + bx + c$	3
	(i) م	if $a < 0$ and $\Delta > 0$	3
	+(ii)	if $a > 0$ and $\Delta < 0$	
	≠ (iii)	if $a > 0$ and $\Delta = 0$.	
d) Find the value of mift the counties 2-2 5 at		3	
e)		for x , $(2^x)^2 - 9(2^x) + 8 = 0$.	
			2

(12 marks) aion 4.

- If α and β are the roots of the quadratic equation $2x^2 5x 4 = 0$, find the value of:
 - , (i) $\alpha + \beta$

$$*(iii)$$
 $\frac{2}{\alpha} + \frac{2}{\beta}$

- Find the derivative from first principles for the function $f(x) = 3x^2 + 4x$.
- Express $15-8x-x^2$ in the form $a-(x+b)^2$, by completion of squares method or otherwise.

3

3

2

Hence find the maximum value of $15-8x-x^2$, and the value of x for which this occurs.

Which equation best suits the graph drawn?

B]
$$y = x^2(2-x)(3-x)$$

C]
$$y = x(2-x)(3-x)$$

Hint: As this is a cubic equation, there are 3 roots. Find the roots and hence determine the appropriate equation.

Please give reasons for your answer. (no marks will be given if there is no reason)

BONUS QUESTION (2 marks)

The tangent to the curve $y = ax^2 + bx + 1$ passes through the point (1,5) and is parallel to the line y-6x-2=0. Find the values of a and b.

SOLUTIONS TO ASSESSMENT MATHEMATICS TASK 1-4th December 2006

