SOUTH SYDNEY HIGH SCHOOL

2006
Higher School Certificate
Preliminary Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- All necessary working should be shown in every question
- · Board approved calculators may be used
- · A table of standard integrals is provided
- Write your student number and/or name at the top of every page

Total marks - 72

Attempt All Questions 1 – 6

All Questions are of equal value

This paper MUST NOT be removed from the examination room

Question 1

 \mathbf{v} (a) \mathbf{x} Differentiate $\frac{1+x^2}{\sqrt{1+2x}}$

2

Marks

- (b) A polynomial P(x) is given by $P(x) = x^3 + ax + b$ for some real numbers a and b. (x-2) is a factor of P(x), and when P(x) is divided by x the remainder is 2, Find the values of a and b.
- (c) The equation $x^3 6x^2 + 4x + 2 = 0$ has three real roots α, β and γ .
 - (i) Write down the values of $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.
 - ii) Hence find the value of $(\alpha 2)(\beta 2)(\gamma 2)$.

(d)

In the diagram the two circles intersect at A and B. P is a point on one circle. The lines PA produced and PB produced meet the other circle at C and D respectively. MNP is the tangent to the first circle at P.

- Copy the diagram.
- (ii) Give a reason why ∠MPA = ∠PBA.
- (iii) Hence show that CD //MN.

3

2

2

2

1

1

(a) TA and TB are tangents to a circle such that $\angle ATB = 70^{\circ}$. The parallel from A to TB meets the circle at C.

- (i) Find the value of ∠ACB. Give reasons. ❖
- (ii) Find the value of ∠ABC. Give reasons
- (b) Sketch the graph of the function $f(x) = \frac{|x|}{x}$.
- (c) (i) Show that $\frac{1 + \cos 2x}{\sin 2x} = \cot 2x$.
 - (ii) Hence find the exact value of cot15°.

(d)

- (i) The acute angle between the lines y = 3x and y = 8x is θ . Show that $\tan \theta = \frac{1}{5}$.
- (ii) The acute angle between the lines y = mx and y = 3x is also θ . Find the value of the real number m, where m < 3.

Question 3			Marks
(a)	(-7.5) and $B(3.1)$ are two points. Find the coordinates of the point P which divides the interval AB externally in the ratio 3:1.		2
(b)	Find the coordinates of the points on the curve $y = x\sqrt{2-x^2}$ where the tangents to the curve are parallel to the x axis.		3
≻ (c)	(i)	Express $3\cos x - 4\sin x$ in the form $R\cos(x + \alpha)$ for some $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to the nearest minute.	2
	(ii)	Hence solve the equation $3\cos x - 4\sin x = 5$ for $0^{\circ} \le x \le 360^{\circ}$, giving the answer correct to the nearest minute.	1
($P(a,b)$ is a point on the curve $y = \frac{1}{3}x^3 - x^2$.		
	(i)	Find the gradient of the normal to the curve at P.	1
	(ii)	If the normal at P is parallel to the line $y = x$, find the coordinates of P.	3
Question 4			
⊬ (a)	Solve	the inequality $\frac{x-2}{x} > 0$.	2
⊁ (b)	$A(a,b)$ and $B(c,d)$ are two points. $P(x,y)$ is a variable point which moves so that $\angle APB = 90^\circ$. Show that the locus of P has equation $(x-a)(x-c)+(y-b)(y-d)=0$.		
(c)	(i) ×	Express $\sin x$ and $\cos x$ in terms of $t = \tan \frac{x}{2}$.	1
	(ii) X	Y-Hence solve the equation $\cos x + \sin x = -1$ for $0^{\circ} \le x \le 360^{\circ}$.	3
(d)	A parabola has equation $4y = x^2 + 4x + 8$.		
	(i)	Find its focal length.	1
	(ii)	Find the coordinates of the vertex.	1

1

1

State the equation of the axis of symmetry.

Draw a neat sketch of the graph of the parabola

Question 5

Show that the line $y = mx - m^2$ is tangent to the parabola $x^2 = 4y$ for all real m.

Show that tan(A+B) = -tan C.

ABC is an acute angle angled triangle.

Hence show that $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$.

Marks

1

2

3

1

Solve the equation |x-2| > |x|.

Consider the equation $x^3 - 3x^2 + 2x + p = 0$

Given that the sum of two roots is 3, find the value of p.

Sketch the graph of $x(x-1)^3(x+2)^2$ (i) 2

Hence or otherwise, solve the inequation $x(x-1)^3(x+2)^2 \ge 0$.

Question 6

Find the value of $\lim_{h\to 0} \frac{\sqrt{1+h}-1}{h}$ by first rationalising the numerator.

Solve the equation $2\cos^3\theta - \sin 2\theta = 0$, $0^\circ \le \theta \le 360^\circ$. (c)

The diagram shows a vertical tower AT of height h metres stands with its base A on horizontal ground. (d) B is a point on the ground due west of A, and C is a point on the ground 150m from B and has a true bearing of 205° from A.

From B and C the angle of elevation of the top T of the tower are 28 and 36 respectively.

Show that the height h of the tower can be expressed as

$$h = \frac{150}{\sqrt{\tan^2 54^\circ + \tan^2 62^\circ - 2\tan 54^\circ \tan 62^\circ \cos 65^\circ}}$$

Hence, find the height of the tower, correct to the nearest minute.

Question 1%

 $d\beta \gamma = -\frac{cl}{q}$ = -2 / (for 3 values)

(tankents from extrema

LACB = 55 / Angle between tangent

$$\frac{-2}{\sqrt{2-x^2}} + \sqrt{2-x^2}$$

$$= \frac{-x^2 + 2 - x^2}{\sqrt{2-x^2}}$$

$$= \frac{2 - 2x^2}{\sqrt{2-x^2}}$$

$$= \frac{2 - 2x^2}{\sqrt{2-x^2}}$$
When if parallel to x axis

then $m = 0$

$$= \frac{2 - 2x^2}{\sqrt{1-x^2}} = 0$$

$$= \frac{2 - 2x^2}{\sqrt{1-x^2}} = 1$$

$$= \frac{2 - 2x}{\sqrt{1-x^2}} = 0$$

$$= \frac{2 - 2x^2}{\sqrt{1-x^2}} = 1$$

$$= \frac{2 - 2x}{\sqrt{1-x^2}} = 0$$

$$= \frac{2 - 2x^2}{\sqrt{1-x^2}} = 1$$

$$= \frac{2 - 2x}{\sqrt{1-x^2}} = 1$$

$$m_1 = \frac{y-b}{x-a}, m_2 = \frac{y-d}{x-c}$$

$$(2+2)^2 = 4y-4$$

For one rest

tomit + tom B+ tom C = tomp tom B, ton C

$$3+\gamma=3$$

(1) XX 1 or x < 0

Question 6

