

SOUTH SYDNEY HIGH SCHOOL

MATHS – EXT1 WORKSHEETS

CONGRUENCE & SIMILARITY

Exercises

16. Show that triangles XYZ and MNO are congruent.

17. Prove that $\triangle AED = \triangle ABD = \triangle BCD$.

18. Show that \triangle ABC and \triangle ADC are congruent.

19. Given that $\triangle ABC = \triangle DEF$, find the length of side AC.

20. Prove that triangles FGH and FKJ are congruent.

21. Find the values of x and y.

- 22. The diagram shows two concentric circles with centre O.
 - (a) Prove that $\triangle OAB \parallel \triangle OCD$.
 - (b) If radius OC = 10.1 cm and radius OB = 3.5 cm, and the length of AB = 2.3 cm find the length of CD (correct to 2 decimal places).

23. Find the values of x and y correct to 2 decimal places.

24. ABCD is a parallelogram with CD produced to E. Prove that $\triangle ABF \parallel \triangle CEB$.

25. Show that $\triangle AED \parallel \triangle ABC$. Find the value of b.

PYTHAGORAS THEOREM

- 26. Find the slant height of a cone with diameter 1.2 m and perpendicular height 3.7 m.
- 27. Calculate the length of XZ correct to 1 decimal place.

28. Find the length of EO in this rectangular pyramid:

- 29. (a) Find the length of diagonal AC in the figure.
 - (b) Hence, or otherwise, prove that AC is perpendicular to DC.

- 30. The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$ where r = radius and h = perpendicular height.
 - (a) Find the slant height s in terms of h and r and change the subject to h.
 - (b) Hence rewrite the volume formula in terms of r and s instead of r and h.
 - (c) Find the volume of a cone with radius 4 m and slant height 7 m.

Congruent triangles

16.
$$XY = MN$$
 (given)
 $\angle Y = \angle N = 90^{\circ}$ (given)
 $ZY = NO$ (given)
 $\therefore \triangle XYZ = \triangle MNO$ (SAS)

17.
$$\triangle AED = \triangle ABD$$
 (SAS)
 $\therefore \triangle ABD = \triangle BCD$ (SAS)

20. FG = FK (given)

$$\angle$$
FGH = \angle FKJ (base angles of isosceles \triangle)
GH = KJ (given)
 $\therefore \triangle$ FGH = \triangle FKJ (SAS)

Similar triangles

21.
$$x = 11.7, y = 2.55$$

22. (a)
$$\angle AOB = \angle COD$$
 (common)

$$\frac{OA}{OC} = \frac{OB}{OD}$$

(OA = OB and OC = OD, equal radii)

Since 2 pairs of sides are in proportion, and the included angles are equal, the triangles are similar.

(b)
$$\frac{OC}{OA} = \frac{CD}{AB}$$

$$\frac{10.1}{3.5} = \frac{CD}{2.3} \quad (OA = OB)$$

$$\frac{10.1}{3.5} \times 2.3 = CD$$

$$6.64 = CD$$

23.
$$x = 1.56$$
, $\ddot{y} = 3.71$

24.
$$\angle ABF = \angle BEC$$
 (alternate angles, AB || CD)
 $\angle AFB = \angle EBC$ (alternate angles, AD || BC),
so $\angle BAF = \angle BCE$ (angle sum in a \triangle),
 $\therefore \triangle ABF \parallel \triangle CEB$.

25. Three pairs of angles equal b = 3 cm

Pythagoras' Theorem

26.
$$d = 1.2$$
, so $r = 0.6$.
 $s^2 = 0.6^2 + 3.7^2$
 $= 14.05$
 $s = \sqrt{14.05}$
 $= 3.75$ m

$$27. XZ = 14.8 cm.$$

28. EF = 4 cm
EO² =
$$4^2 + 7^2$$

= 65
EO $= 8.06$ cm

29. (a)
$$AC = 10 \text{ cm}$$

(b)
$$\angle ACD = 90^{\circ}$$
, since $10^2 + 24^2 = 26^2$

30. (a)
$$s^2 = h^2 + r^2$$

 $s^2 - r^2 = h^2$
 $\sqrt{s^2 - r^2} = h$
(b) $V = \frac{1}{3}\pi r^2 h$
 $= \frac{1}{3}\pi r^2 \sqrt{s^2 - r^2}$

(c) When
$$r = 4$$
, $s = 7$

$$V = \frac{1}{3}\pi(4)^2\sqrt{7^2 - 4^2}$$

$$= \frac{16\pi}{3}\sqrt{33}$$

$$\stackrel{.}{=} 96.25 \text{ m}^3$$

3