Question 1 (10 marks)

Marks

(a) The velocity of a particle after t sec is $\left(64 - \frac{t^2}{3}\right)$ m/s.

Find: (i) its initial velocity.

1

1

2

2

- (ii) the time at which the particle reverses its direction of motion.
- (iii) its distance from the starting point at that instant.
- (iv) the distance travelled in the first 10 seconds.
- (b) A tank is to be emptied by means of a control valve. The valve operates so that *V* litres, the volume of fluid remaining in the tank, varies with time *t*, measured in minutes, according to the relation

$$\frac{dV}{dt} = -kt$$
, where k is a constant.

(i) Initially the tank contains 5000 litres of fluid. Show that after *i* minutes

$$V = 5000 - \frac{1}{2}kt^2$$

- (ii) If k = 1.44, at what rate will the tank be emptying when V = 2000?
- (iii) Find the time it takes to completely empty the tank? (Give your answer to the nearest minute).

Question 2 (10 marks)

Marks

A particle P moves along a horizontal straight line so that its displacement, x m from a fixed point O, t seconds after motion has begun, is given by

$$x = 28 + 4t - 5t^2 - t^3.$$

(a) Obtain expressions, in terms of t, for the velocity and acceleration of P, and

2

(b) state the initial velocity and the initial acceleration of P.

2

A second particle Q moves along the same horizontal straight line as P and starts from Q at the same instant that P begins to move. The initial velocity of \mathbb{R} is 2 ms^{-1} and its acceleration, $a \text{ ms}^{-2}$, t seconds after motion has begun, is given by Q_t

$$a = 2 - 6t$$
.

Find:

6

- (c) the value of t at the instant when P and Q collide and
- (d) determine whether or not P and Q are travelling in the same direction.

Question 3 (11 marks)

(a) The population of a town over t years is given by the formula

2

$$P = P_0 e^{0.0124t}$$
 where P_0 is its initial population

How long will it take to triple its initial population (to the nearest year).

- (b) The letters of the word **AROUND** are written at random on the circumference of a circle.
 - (i) How many different permutations are possible?

1

(ii) What is the probability that the three vowels are together?

2

(c) The rate of change of temperature of an object T^0 is given by

$$\frac{dT}{dt} = k(T-16)$$
 degrees/min where k is a constant.

(i) Prove that the function $T = 16 + Pe^{kt}$, where P is a constant and t the time in minutes, satisfies this condition.

1

(ii) If, initially T = 0, and after 10 minutes, T = 12, find the values of P and e^{10k} .

2

(iii) Find the temperature of the object after a further 5 minutes.

1

(iv) Sketch a graph of T as function of t and describe its behaviour as t continues to increase.

2

Question 4 (9 marks)		<u>Marks</u>
(a)	How many ways are there of arranging all the letters of the word	1
	PARRAMATTA?	
(b)	A sphere is increasing in volume at a rate of 20π cm ³ /sec. Given that the volume of a sphere is given by $\frac{4}{3}\pi r^3$, calculate	3
	the radius of the sphere at the instant when the radius is increasing at the rate of 0.2 cm/s.	
(c)	A class of twenty pupils consists of 12 girls and 8 boys. For a discussion session four "officers" are to be chosen at random as "Chairman", "Recorder", "Proposer" and "Opposer". Find, giving your answers correct to three significant figures.	5
	(i) the probability that all four officers are girls	
	(ii) the probability that two officers are girls and two are boys.	
	(iii) the probability that the Proposer and Opposer are both girls	
	(iv) the probability that the Proposer and Opposer are of opposite sex given that the Chairman and Recorder are both girls.	

End of assessment task

Question 1 (10 Marks)

- (a) (i) $V = 64 \text{ m/s} \checkmark$
 - (ii) $t = 8\sqrt{3} \text{ s. } \checkmark$
 - (iii) x = 591 m (to the nearest metre). $\checkmark\checkmark$
 - (iv) $x = 529 \text{ m} \checkmark \checkmark$
- (b) (i) Proof ✓
 - (ii) $\frac{dV}{dt} = -92.95 \text{ L/min } \checkmark\checkmark$
 - (iii) t = 83 min (to the nearest min) \checkmark

Question 2 (10 Marks)

- (a) (i) $v = 4 10t 3t^2$ m/s \checkmark
 - (ii) $a = -10 6t \text{ m/s}^2 \checkmark$
- (b) (i) $v = 4 \text{ m/s} \checkmark$
 - (ii) $a = -10 \text{ m/s}^2 \checkmark$
- (c) Particles collide by equating x when $t = \frac{7}{3} s \checkmark \checkmark \checkmark \checkmark$
- (d) Show that *v* for P and Q are both negative, ✓ hence travelling the same direction. ✓

Question 3 (11 Marks)

- (a) $3 = \ln e^{0.0124t} \checkmark$
 - t = 89 years (nearest yr). \checkmark
- (b) (i) 120 ✓
 - (ii) No. of ways 3 vowels together = 3!3!=36 ✓

P(vowels together) =
$$\frac{36}{120} = \frac{3}{10}$$
 \checkmark

- (c) (i) Proof ✓
 - (ii) $P = -16 \checkmark e^{10k} = 0.25 \checkmark$
 - (iii) 14° ✓
 - (iv) As $t \to \infty$, $Pe^{kt} \to 0$, $\therefore T \to 16 \checkmark$

Question 4 (9 Marks)

- (a) $\frac{10!}{4!2!2!} = 37800 \checkmark$
- (b) $T_1 \times T_2 = 32$
- (c) (i) P(all girls) = $\frac{{}^{12}C_4}{{}^{20}C_4} = \frac{33}{323} \checkmark$
 - (ii) P(2G,2B) = $\frac{{}^{12}C_2 \times {}^8C_2}{{}^{20}C_4} = \frac{616}{1615} \checkmark$
 - (iii) P(P & O are both girls) = $\frac{12}{20} \times \frac{11}{19} \times 1 \times 1 = 0.347$
 - (iv) No. of combinations of $C_G R_G$ & two others = $^{12} C_2 \times ^{18} C_2 = 10~098 \checkmark$ No. of combinations of P & O are of different sex = $^{12} C_2 \left(^{10} C_1 \times ^8 C_1 \right) = 5280 \checkmark$
 - :. $P(P\&O \text{ opp.sex/both } C_G R_G) = \frac{5280}{10098}$ = 0.523