

SOUTH SYDNEY HIGH SCHOOL

Year 12 Half-yearly Examination May 2001

MATHEMATICS EXTENSION 2

Instructions:

<u>Time Allowed:</u> 2 hours (Plus 5 mins reading time)

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown.
- Marks may be deducted for poorly arranged or missing working.
- Write your Name / Student Number on every page.
- Board-approved calculators may be used.
- A table of standard integrals is included.

Question 1 (15 marks)

Marks

(a) If $z = \frac{3+7i}{2-5i}$ find:

4

(i) Re(z)

(ii) Im(z)

(iii) |z|

(iv) arg(z)

- (v) $\arg\left(\bar{z}\right)$
- (b) Express the following complex numbers in the form a + ib.

4

(i) $\left(\sqrt{3}-i\right)^6$

(ii)
$$\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)^{-4}$$

(c) Sketch on an Argand diagram the region satisfying the following conditions simultaneously

4

$$\left|\arg z\right| \le \frac{\pi}{3}, \ \left|z\right| < 2 \text{ and } \left|\operatorname{Im}(z)\right| \le 1$$

(d) ABCD is a rectangle described in an anticlockwise direction. BC = 2AB. If A and B represent -2-3i and -3+2i respectively, find the complex numbers representing points C and D.

3

Question 2 (15 marks)

Marks

3

- (a) Show that 2+i is a root of $P(x) = x^3 2x^2 3x + 10$. Hence factorise P(x) completely.
- (b) If $u = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$ and $v = \cos \left(-\frac{\pi}{4}\right) + i \sin \left(-\frac{\pi}{4}\right)$ are two complex numbers.

 4 Using De Moivre's theorem:
 - (i) show that $u^4 + v^4 + 2 = 0$.
 - (ii) find the values of $u^2 + v^2$ and $u^2 v^2$, giving answers in the form a + ib.
- (c) (i) Find in mod-arg form the five roots of the equation $z^5 = 1$ and and graph them on the Argand diagram.
 - (ii) Let α be the root in the first quadrant. Show that the other four roots are all powers of α .
 - (iii) By grouping the unreal roots in conjugate pairs, factorise the polynomial z^5-1 into the product of three factors with real coefficients.
 - (iv) Hence show that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$

Continue next page....

Question 3 (15 marks)

Marks

Find $\int_0^{\frac{\pi}{12}} \sin^2 3x \ dx$ (a)

3

Using the given substitution, find the integral (b)

3

$$\int \frac{1}{x\sqrt{\log_e x}} dx \qquad \text{if } u = \log_e x$$

Find the following integrals: (c)

3

(i)
$$\int x\sqrt{x^2-5}\ dx$$

(ii) $\int \sin^3 x \cos^2 x \ dx$

6

(i)
$$\int \frac{dx}{(x-2)(x+1)}$$

(ii)
$$\int \frac{x^2 + 5}{x^2 + 4} dx$$

Question 4 (15 marks)

Marks

(a) Find the following integrals:

4

- (i) $\int x \cos x \, dx$
- (ii) $\int (\log_e x)^2 dx$
- (b) If $I_n = \int x^n e^x dx$, use integration by parts to show that

4

$$I_n = x^n e^x - nI_{n-1} \quad \text{for } n \ge 1.$$

Hence evaluate $\int_0^1 x^4 e^x dx$.

(c) Use the substitution $t = \tan \frac{\theta}{2}$ to show that

3

$$\int_0^{\frac{\pi}{3}} \frac{dx}{2 - \cos \theta} = \frac{\sqrt{3}\pi}{6}$$

(Hint: Use the standard integral $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$)

4

$$\int_{3}^{4} \frac{-4}{x^{2}(x-2)} dx = \frac{1}{6} + \log_{e} \frac{2}{3}$$

(d) Express $\frac{-4}{x^2(x-2)}$ in partial fractions, and show that

Question 5 (15 marks)

Marks

For the polynomial equation $2x^3 - 4x^2 + x - 6 = 0$, find the value of

7

- $\sum \alpha = \alpha + \beta + \gamma \qquad (ii) \sum \alpha \beta$ (i)
- (iii) αβγ

(iv)
$$\frac{\alpha}{\beta \gamma} + \frac{\beta}{\alpha \gamma} + \frac{\gamma}{\alpha \beta}$$
 (v) $\alpha^3 + \beta^3 + \gamma^3$

- When a polynomial P(x) is divisible by (x-2) and (x-3), the respective (b) remainders are 4 and 9, determine what the remainder must be when it is divided by (x-2)(x-3).
- 3

If the equation $x^3 + 3ax^2 + 3bx + c = 0$ has a repeated root, show that the root (c) also satisfies the equation $x^2 + 2ax + b = 0$.

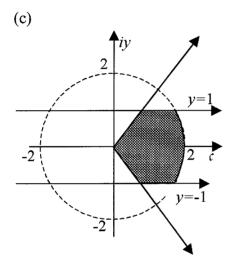
5

Hence show that the value of the repeated root in terms of a, b and c is given by

$$\frac{c-ab}{2(a^2-b)}.$$

End of Half-yearly Exam

- (1) (a) (i)
- (ii)
- (iii)
- $\sqrt{2}$ (iv) $\frac{3\pi}{4}$
- $(v) -\frac{3\pi}{4}$
- (b) (i) -64
 - (ii) $\frac{1}{2} \left(1 \sqrt{3}i \right)$

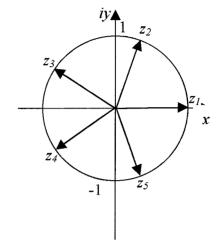


- (d) C(-13,0); D(-12,-5)
- (2) (a) $(x^2-4x+5)(x+2)$
 - (b) (i) Proof

0

- (ii) 0; 2i
- (c) (i) $1, cis\left(\frac{2\pi}{5}\right), cis\left(\frac{4\pi}{5}\right)$ $cis\left(\frac{6\pi}{5}\right) = cis\left(-\frac{2\pi}{5}\right)$

$$cis\left(\frac{8\pi}{5}\right) = cis\left(-\frac{2\pi}{5}\right)$$



- (ii) $\alpha = cis\left(\frac{2\pi}{5}\right)$ $cis\left(\frac{4\pi}{5}\right) = cis\left(\frac{2\pi}{5}\right)^2 = \alpha^2$
 - and so on.

(iii)

$$(z-1)\left(z^2-2\cos\frac{2\pi}{5}z+1\right)\left(z^2-2\cos\frac{4\pi}{5}+1\right)$$

(iv) Proof

- (3) (a) $\frac{1}{2} \left(\frac{\pi}{12} \frac{1}{6} \right)$
 - (b) $2\sqrt{\log_e x} + c$

- (c) (i) $\frac{\sqrt{(x^2-5)^3}}{3} + c$
 - (ii) $-\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + c$
- (d) (i) $\frac{1}{3} \ln \left| \frac{x-2}{x-1} \right| + c$
 - (ii) $x + \frac{1}{2} \tan^{-1} \frac{x}{2} + c$
- (4) (a) (i) $x \sin x + \cos x + c$
 - (ii) $x(\ln x)^2 2x \ln x + 2x + c$
 - (b) 9e 24
 - (c) Proof
 - (d) Proof
- (5) (a) (i) 3 (ii) $\frac{1}{2}$
 - (iii) 3 (iv) 1
 - (v) 10
 - (b) 5x-6
 - (c) Proof