SOUTH SYDNEY HIGH SCHOOL

Year 12 Assessment Task March 1999

MATHEMATICS

4 Unit

Instructions:

Time Allowed: 2 periods

- 1. All questions may be attempted.
- 2. Start each question on a new sheet of paper.
- 3. All necessary working should be shown.
- 4. Marks may be deducted for poorly arranged or missing working.
- 5. Approved calculators may be used.

- (a) Given that $z_1 = \frac{1+i}{1-i}$ and $z_2 = \frac{\sqrt{2}}{1-i}$.
 - (i) Express z_1 and z_2 in the form a+ib, and find their modulus and arguments.
 - (ii) By plotting z_1 and z_2 on the Argand diagram, and without the calculator, show that the arguments of $z_1 + z_2$ is $\frac{3\pi}{8}$.
- (b) Describe geometrically the locus of z given that $\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{3}$.
- (c) By using De Moivre's theorem, solve for z in $z^5 = \left(\sqrt{3} + i\right)^4$.

QUESTION 2

(a) If
$$z = \frac{8}{1 + \sqrt{3}i}$$
, find \overline{z}

- (b) For what values of n is $(3 + \sqrt{3}i)^n$ purely imaginary?
- (c) Shade the region of the Argand diagram defined by $|z (2+i)| \le 3$ and $-3 \le Re[(1+2i)z] \le 2$

(d) Solve the equation
$$z^2 + (1+2i)z + 1 - 5i = 0$$

(e) Find
$$|z_1z_2|$$
 and $\arg(z_1z_2)$ if z_1 and z_2 are the roots of
$$(5+3i)z^2-(1+4i)z+(8-2i)=0$$

(iii) Write down the other two complex roots of

2

 $x^4 + x^2 + 1 = 0$ in terms of w.

(f) If $z_1 = r_1 cis\theta_1$ and $r_2 = r_2 cis\theta_2$ where $cis\theta = cos\theta + i sin\theta$,

prove that: (i) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ and (ii) $arg\left(\frac{z_1}{z_2} \right) = arg z_1 - arg z_2$.

End of Assessment Task!!!

- Answers to 4U Assessment Task March 1999
 (1) (a) (i) $z_1 = i = cis\left(\frac{\pi}{2}\right)$, $z_2 = \frac{\sqrt{2}}{2}(1+i) = cis\left(\frac{\pi}{4}\right)$ (ii) Geometrical proof is best.
- (b) Major arc of a circle with centre $\left(0, \frac{2\sqrt{3}}{3}\right)$ and radius $\frac{4\sqrt{3}}{3}$
- (c) $z_k = 8 \frac{1}{5} cis \left(\frac{2\pi}{3} + 2k\pi \right)^{\frac{1}{5}}$ for k = 0, 1, 2, 3, 4.
- (2) (a) $2(1+\sqrt{3}i)$ (b) n=6k-3 where k=1,2,...

- (d) z = 1 + i or -2 3i
- (e) $|z_1z_2| = \sqrt{2}$, $\arg(z_1z_2) = -\frac{\pi}{4}$

(ii) $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right); \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

- (b) $\pm \sqrt{2} \cdot \pm \sqrt{3} i$
- (c) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -3$ (d) $2 \pm 3i, \pm 1$

- (e) (i) Proof (ii) Deduce
- (iii) w, w²
- (f) (i), (ii) Proofs