Year 12 Assessment Task 1
March 2001

Extension 2

Instructions : - Time Allowed: 2 periods
1. All questions may be attempted. -
2. Questions are not of equal value,
3. All necessary working should be shown,
4. Marks may be deducted for poorly arranged or missing working.
5. Approved calculators may be used.




Jf cosax dx

f sinax dx

sécZax dx

ro

secaxtan ax dx

STANDARD INTEGRALS

1 X nz-1;x#0, fn<0
n+1

Inx, x>0

Qj—

1
— gcosax, a=0

1
slanax, a#0

gsecax, a=0

1

Liop-1X
atan

5 a#0

-1X
7 a>0, —a<x<a

sin

In {x-&- J (2 —a%) }, x| > la]

In {x-{- J 2 +a?) }

NOTE: Inx=log,x; x>0




S.S.H.S. — Yeari2 Mathematics Extension2 Assessment T, ask I —March 2001

Question 1 (15 marks)

ot

(a)  Solve the following equations over the complex field.

@) X +5x+10=0
() P4+x’-2=0

(b) Simplify, expressing each answer in the form a+7b
O (-27+(i+3)

.. 1
1 3-2f4—
(i) 5

+1i
(¢) Find the modulus and argument of each complex number
i 1-3;
(i) 1+itana

(d) If z=2- 3ievaluate 7, z+4 and 7 - 4.

Plot points, to represent these four complex numbers, in the Argand diagram.

Interpret these results geometrically.

Continue next page....

Marks
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Question 2 (15 marks)

(2)

()

(d

©

Find the square roots of 7-24i.

ABCD is a square described in an anticlockwise sense. If 4 and B respectively
Represent 4—2iand 3+ 27, find the complex numbers represented by C and D.

Shade the region in the Argand diagram defined by the inequalities:

z T
~=<argz<~ and |z]<2.
4 4

- . - . ~ . \3/
Ifw is a non-real cube root of unity, evaluate (1 +w) {1 +2w+ ZWZ) .

(You may assume that 1+w+w” =0.)

By expanding (cos 6 +isin :9)5 , show that sin 58 may be expressed in the form

asin® @ +bsin® 0+ csin @, where g, b and ¢ are constants and find g, & and c.

Continue next page....
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Marks
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Question 3 (20 marks)

Marks
(2) Use De Moivre’s theorem to solve z° = 64. Show that the points representing 5
the six roots of this equation on an Argand diagram form the vertices of a regular
hexagon. Find the area of this regular hexagon.
(b)  Solve the equation x*—3x* —6x* +28x—24=0 given that it has a #riple root. 3
" () Use the factor theorem to show that 1+7 is a zero of the polynomial 3
P(z)-—-Zz3 ~5z2 +62-2.
Hence factorise the poiynOmial function over the complex field,
(@ I z=r(cosé +isinb) and z, =7, (cosé, +ising,),
() Showthat |7,z,|=|z|.|z,] and arg(zz, ) = argz, +argz,. 2
Z.
(i) Hence deduce the result for |-1| and are —‘j i
Z

(e) If z=cosf+isin@,

(i) Show that z” +in =2cosnb. 1

z

(i) Hence show that cos’ @ = fé(cos 56+ 500836 +10cos6). 3




S.S.H.S — Year 12 — Maths Extension 2 Assessment Task 1 Answers 2

ST

()  x=1-l%i

® G 11+2

17-11
5.

(iD)

© () =410, argz==71°33" .

G)  |g=seca, argz=a

(d) Parallelogram.

@) (@  A-3i,-4+3i

®)  C(-L1), D(0,-3)

Ay b= 4

(@ 1

(&) a=16,b=-20,c=35

(@)

Area =63 1’

®) x=-3,222

©  (22-1)(z=1-1){z-1+1)

(@ () Proof

) 12 il g
z,| |z
arg{—:l—} =argz, —argz,
“2
2 __2_, T
(iit) H_ > 5 6

(e) (i) Proof

(ii) Proof




