SOUTH SYDNEY H.S.

2015

YEAR 11

YEARLY EXAMINATION

Stude	ent Name:	
	Section 1	
	Section II	
	Question 11	
	Question 12	
	Question 13	
	Question 14	

Mathematics

General Instructions

- · Working time 2 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show relevant mathematical reasoning and/or calculations in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- · Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- · Allow about I hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the value of $\frac{\sqrt{3.84}}{3.65+6.7}$ correct to two decimal places?
 - (A) 0.19
 - (B) 0.61
 - (C) 5.28
 - (D) 8.44
- 2 What is the solution to the equation $6x^2 = x + 2$?

(A)
$$x = -\frac{2}{3}$$
 or $x = -\frac{1}{2}$

(B)
$$x = \frac{2}{3}$$
 or $x = -\frac{1}{2}$

(C)
$$x = -\frac{2}{3}$$
 or $x = \frac{1}{2}$

(D)
$$x = \frac{2}{3}$$
 or $x = \frac{1}{2}$

- 3 What is the midpoint of (-2,5) and (2,-3)?
 - (A) (0,1)
 - (B) (0,4)
 - (C) (2,1)
 - (D) (2,4)
- What is the simultaneous solution to the equations 2x y = -8 and 3x + 2y = -5?
 - (A) x = -3 and y = -2
 - (B) x=-3 and y=2
 - (C) x = 3 and y = -2
 - (D) x=3 and y=2

- 5 Which of the following is true for the function $f(x) = 8x^3 7x$?
 - (A) Even function
 - (B) Odd function
 - (C) Neither odd or even
 - (D) Zero function
- 6 The diagram shows the graph of the function $y = 5x x^2$.

What pair of inequalities specify the shaded region?

- (A) $y \le 5x x^2$ and $y \le 0$.
- (B) $y \le 5x x^2$ and $y \ge 0$.
- (C) $y \ge 5x x^2$ and $y \le 0$.
- (D) $y \ge 5x x^2$ and $y \ge 0$.
- 7 The following triangle has sides 30 cm, 50 cm and 60 cm.

Angle C is the largest angle. Which of the following expressions is correct for angle C?

- (A) $\cos C = \frac{30^2 + 60^2 50^2}{2 \times 30 \times 60}$
- (B) $\cos C = \frac{50^2 + 30^2 60^2}{2 \times 50 \times 30}$
- (C) $\cos C = \frac{50^2 + 60^2 30^2}{2 \times 50 \times 60}$
- (D) $\cos C = \frac{50^2 + 30^2 60^2}{2 \times 50 \times 60}$

- 8 What is the exact value of cos135' + cosec60'?
 - $(A) \quad \frac{2\sqrt{2} \sqrt{3}}{\sqrt{6}}$
 - (B) $\frac{2\sqrt{2}-1}{\sqrt{2}}$
 - (C) $\frac{2\sqrt{2} + \sqrt{3}}{\sqrt{6}}$
 - (D) $\frac{2\sqrt{2}+1}{\sqrt{2}}$
- 9 What values of k does the equation $x^2 + (k+3)x + 5 = 0$ have equal roots?
 - (A) $k = -3 \pm \sqrt{5}$
 - (B) $k = -3 \pm 2\sqrt{5}$
 - (C) $k = 3 \pm \sqrt{5}$
 - (D) $k = 3 \pm 2\sqrt{5}$
- 10 What is the solution to the equation $\cos\left(\frac{\theta}{2} + 30^{\circ}\right) = \sin\theta$ for $0^{\circ} \le \theta \le 90^{\circ}$?
 - (A) $\theta = 20^{\circ}$
 - (B) $\theta = 30^{\circ}$
 - (C) $\theta = 40^\circ$
 - (D) $\theta = 50^{\circ}$

Section II

Question 12 (15 marks)

Marks

60 marks
Attempt Questions 11 – 14
Allow about 1 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Que	estion 11 (15 marks)	Marks
(a)	Find the value of a and b if $\frac{4}{3-\sqrt{7}} = a+b\sqrt{7}$.	2
(b)	Factorise completely $3x^2 + 15x - 72$	2
(c)	Solve $x^2 + 4x + 3 \ge 0$	2
(d)	Factorise completely $x^2y - y - z + x^2z$.	2
(e)	Solve $ 4-3x =7$	2
(f)	Simplify $\frac{x^3 - 1}{x^2 - 1} \times \frac{x^2 - 4x - 5}{4x^2 + 4x + 4}$	3
(g)	Solve for x if $4^x = 32$	i
(h)	The line $6x - ky = 2$ passes through the point (3,2). Find the value of k.	1

Question 12 (15 marks)

Marks

(a) The line x+2y-4=0 cuts the x-axis at B and the y-axis at A.

- (i) What are the coordinates of A and B?
- (ii) Find the perpendicular distance from P(2,6) to x+2y-4=0.
- (iii) Find the gradient of AP.
- (iv) Hence or otherwise find the equation of AP.
- v) What is the distance from A to B?
- (vi) Calculate the area of ΔΑΡΒ.
- p) Prove $(\sec \theta \cos \theta)^2 = \tan^2 \theta \sin^2 \theta$
- (c) Solve the equation $2\cos\beta = -\sqrt{3}$ for $0^{\circ} \le \beta \le 360^{\circ}$
- (d) Draw neat one third page sketches of the following equations on a separate set of axes. Show clearly the essential features of each graph.

(i)
$$(x-1)^2 + y^2 = 36$$

., (,, _) , ,

(ii) y = |x+3|

(e) For what values of m is $-4x^2 + 3x + m$ a positive definite.

Question 13 (15 marks)

Marks

.2

(a) A vertical tower AB with points B, C and D in a straight line on the ground is shown below. The distance CD is 100 metres. The angle of elevation to the top of the tower from point C is 35° and from point D is 60°.

- (i) Show that $AD = \frac{100 \sin 35^{\circ}}{\sin 25^{\circ}}$
- (ii) Calculate the height of the tower. Answer to the nearest metre.
- (b) A point A is 6 km south-west of a point O and a point B is 9 km on a bearing of 140° from O.
 - (i) What is the size of ∠AOB?
 - (ii) Find the distance AB correct to one decimal place.
 - iii) Find the size of \(\angle BAO\) correct to the nearest degree.
 - (iv) Find the true bearing of B from A.
- (c) Find the value of k if the sum of the roots of $x^2 (k-1)x + 2k = 0$ is equal to the product of the roots.
- (d) Solve $4^x 9(2^x) + 8 = 0$
- (e) Evaluate $\sum_{r=1}^{3} 2^{1-r}$

Que	estion :	14 (15 marks)	Marks
(a)	If α	and β are roots of the quadratic equation $2x^2 - 7x + 8 = 0$, find	
	(i)	$\alpha + \beta$	1
	(ii)	αβ	1
	(iii)	$\frac{1}{\alpha} + \frac{1}{\beta}$	1
(b)	The f	unction $y = f(x)$ is defined as follows:	
		$\int 2^{x} for \ x < 0$	
		$f(x) = \begin{cases} 2^x & \text{for } x < 0 \\ 1 & \text{for } x = 0 \\ x^{-1} & \text{for } x > 0 \end{cases}$	
		x^{-1} for $x > 0$	
	(i)	Draw a sketch of the graph of $y = f(x)$.	2
	(ii)	Evaluate $f(-3) + f(0) + f(3)$.	1
(c)	For th	ne arithmetic sequence 4, 9, 14, 19,	
(4)	(i)	Write the rule to describe the nth term.	1
	(ii)	What is the 25 th term?	1
	(iii)	Find the sum of the first 100 terms.	1
(d)	Given	the parabola $x^2 - 4x - 12 = 8y$	
	(i)	Write the equation in the form $(x-h)^2 = 4a(y-k)$	1
	(ii)	Find the coordinates of the vertex and focus.	2
	(iii)	Find the equation of the axis of symmetry of the parabola.	1
	(iv)	Draw a neat sketch of the parabola showing the above information.	2

End of paper

1 What is the value of $\frac{\sqrt{3.84}}{3.65+6.7}$ correct to two decimal places?	
$\frac{\sqrt{3.84}}{3.65 + 6.7} = 0.1893325405 \approx 0.19$	1 Mark: A
2 What is the solution to the equation $6x^2 = x + 2.7$	-
$6x^2 - x - 2 = 0$	
(3x-2)(2x+1) = 0	
(3x-2)=0 or $(2x+1)=0$	1 Mark: B
$\therefore x = \frac{2}{3} \text{ or } x = -\frac{1}{2}$	•
3 What is the midpoint of (-2,5) and (2,-3)?	
Midpoint = $\left(\frac{-2+2}{2}, \frac{5+-3}{2}\right)$ = (0,1)	1 Mark: A
4 What is the simultaneous solution to the equations $2x - y = -8$ and $3x + 2y = -5$?	
$2x - y = -8 \qquad (1)$	•
$3x + 2y = -5 \qquad (2)$	
Multiply equation (1) by 2	,
4x - 2y = -16 (3)	436.1.5
Equation (2) + (3) 7x = -21 or $x = -3$, 1 Mark: B
Substitute $x=-3$ into equation (1)	
-6-y=-8 or y=2	
Solution is $x = -3$ and $y = 2$.	
5 Which of the following is true for the function $f(x) = 8x^3 - 7x$?	
$f(x) = 8x^3 - 7x Odd function f(-x) = -f(x).$	
$\int (-x) = 8 \times (-x)^3 - 7 \times (-x)$	1 Mark: B
$= -(8x^3 - 7x) = -f(x)$	
6 The diagram shows the graph of the function $y = 5x - x^2$. What pair of inequalities specify the shaded region?	
Point A lies of the x axis $(y=0)$.	
To find x when $y = 0$ substitute into $y = 5x - x^2$.	
$0=5x-x^2$	1 Mark: B
=x(5-x)	
$\therefore x = 0 \text{ or } x = 5 \qquad \text{Point } A \text{ is } (5,0)$	
inequalities are $y \le 5x - x^2$ and $y \ge 0$.	
Test by substituting points into the inequalities.	
$(2,1):1 \le 5 \times 2 - 2^2$ and $1 \ge 0$ True.	

Preliminary Mathematics SOLUTIONS 2015

7 The following triangle has sides 30 cm, 50 cm and 60 cm.	
60 cm	
7	
Angle C is the largest angle. Which of the following expressions is correct for angle C?	
Largest angle is opposite the longest side (60 cm)	
Cosine rule $\cos C = \frac{50^2 + 30^2 - 60^2}{2 \times 50 \times 30}$	1 Mark: B
8 What is the exact value of cos135" + cosec60"?	
$\cos 135' + \csc 60' = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} + \frac{2}{\sqrt{3}} = \frac{2\sqrt{2} - \sqrt{3}}{\sqrt{6}}$	1 Mark: A
9 What values of k does the equation $x^2 + (k+3)x + 5 = 0$ have equal roots?	
Equal roots $\Delta = 0$ $\Delta = b^2 - 4ac \qquad k = \frac{-6 \pm \sqrt{(6^2) - 4 \times 1 \times -11}}{2 \times 1}$ $= (k+3)^2 - 4 \times 1 \times 5$ $= k^2 + 6k + 9 - 20 \qquad = \frac{-6 \pm \sqrt{80}}{2} = -3 \pm 2\sqrt{5}$ $= k^2 + 6k - 11 = 0$ $\therefore k = -3 \pm 2\sqrt{5}$	I Mark: B
10 What is the solution to the equation $\cos\left(\frac{\theta}{2} + 30^{\circ}\right) = \sin\theta$ for	
$0^{\circ} \le \theta \le 90^{\circ}$? Sine and cosine are complementary angles: $\sin \theta = \cos(90 - \theta)$	· · · · · · · · · · · · · · · · · · ·
Sine and cosine are complementary angles: $\sin \theta = \cos(90 - \theta)$ $\cos\left(\frac{\theta}{2} + 30^{\circ}\right) = \cos(90^{\circ} - \theta)$ $\frac{\theta}{2} + 30^{\circ} = 90^{\circ} - \theta$	l Mark: C
$\frac{2}{2}$ $\theta + 60^{\circ} = 180^{\circ} - 2\theta$	
$3\theta = 120^{\circ} \text{ or } \theta = 40^{\circ}$	•

Que	stion 11 (15 marks)	Marks
(a)	Find the value of a and b if $\frac{4}{3-\sqrt{7}} = a+b\sqrt{7}$.	
	$\frac{4}{3-\sqrt{7}} = \frac{4}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}} = \frac{4(3+\sqrt{7})}{9-7} = 6+2\sqrt{7}$ $\therefore a = 6 \text{ and } b = 2$	2 Marks: Correct answer. 1 Mark: Uses the conjugate.
(b)	Factorise completely $3x^2 + 15x - 72$	
	$3x^{2} + 15x - 72 = 3(x^{2} + 5x - 24)$ $= 3(x+8)(x-3)$	2 Marks: Correct answer. 1 Mark: Finds one factor.
(c)	Solve $x^2 + 4x + 3 \ge 0$	
	$x^{2} + 4x + 3 \ge 0$ $(x+3)(x+1) \ge 0$	2 Marks: Correct answer.
	4 -5 -4 -3 2 1 1 x Hence $x \ge -1$ or $x \le -3$	1 Mark: Finds one solution
(d)	Factorise completely $x^2y - y - z + x^3z$.	
	$x^{2}y-y-z+x^{2}z = x^{2}y+x^{2}z-y-z$ $= x^{2}(y+z)-1(y+z)$ $= (x^{2}-1)(y+z)$ $= (x+1)(x-1)(y+z)$	2 Marks: Correct answer. 1 Mark: Groups terms and factorises.
(e)	Solve $ 4-3x = 7$	
	4-3x < 7 and $4-3x > -7-3x < 3$ $-3x > -11x \ge -1 x \le \frac{11}{3} or 3\frac{2}{3}$	2 Marks; Correct answer. 1 Mark; Finds one
	Solution is $-1 < r < \frac{11}{3}$	solution or shows some understanding.
(f)	Simplify $\frac{x^3 - 1}{x^2 - 1} \times \frac{x^2 - 4x - 5}{4x^2 + 4x + 4}$	·
	$\frac{x^{3}-1}{x^{2}-1} \times \frac{x^{2}-4x-5}{4x^{3}+4x+4} = \frac{(x-1)(x^{2}+x+1)}{(x-1)(x+1)} \times \frac{(x+1)(x-5)}{4(x^{2}+x+1)}$ $= \frac{(x-5)}{4}$	3 Marks: Correct answer. 2 Marks: Makes significant progress. 1 Mark: Correctly factorises one term

(g)	Solve for x if $4^x = 32$	
	$4^{x} = 32$	1 Mark: Correct
	$(2^2)^x = 2^5$	answer.
	2x=5	
	x = 2.5	
(h)	The line $6x - ky = 2$ passes through the point (3,2). Find the value of k.	1
	(3,2) satisfies the equation $6x - ky = 2$	2 Marks: Correct
	$6\times 3 - k\times 2 = 2$	answer.
	18-2k=2	1 Mark: Substitutes
	-2k = -16	(3,2) into the
	k=8	equation

Question 1	2 (15 marks)		Marks
(a) The li	ne x + 2y - 4 = 0 ca	its the x-axis at B and the y-axis at A .	
		Not to scale	
-			
(i)	What are the coore	dinates of A and B?	
	Point A is the y-in: 0+2y-4=0	tercept or $x = 0$	2 Marks: Correct answer.
	y = 2 $\therefore A(0,2)$ Point B is the x-in	tercept or $v=0$	1 Mark: Finds either A or B.
	$x+2\times 0-4=0 \text{ o}$ $\therefore B(4,0)$		
(ii)	Find the perpendic	cular distance from $P(2,6)$ to $x+2y-4=0$.	
	$AP = \begin{vmatrix} ax_1 + by_1 + a \\ \sqrt{a^2 + b^2} \end{vmatrix}$ $= \begin{vmatrix} 2 + 2 \times 6 - 4 \\ \sqrt{1^2 + 2^2} \end{vmatrix}$ $= \begin{vmatrix} 10 \\ \sqrt{5} \end{vmatrix} = \frac{10\sqrt{5}}{5}$ $= 2\sqrt{5}$ Alternatively Pyth		(
(iii)	Find the gradient of		,
\(\sigma_{-3}\)		$\frac{-y_1}{-x_1} = \frac{6-2}{2-0} = \frac{4}{2} = 2$	1 Mark: Correct answer.
(iv)	Hence or otherwis	e find the equation of AP.	
	$y-y_1 = m(x-x_1)$ y-2 = 2(x-0) 2x-y+2=0		1 Mark: Correct answer.

	(v) What is the distance from A to B?	
	Distance $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(4 - 0)^2 + (0 - 2)^2}$	1 Mark; Correct answer.
	$=\sqrt{20}=2\sqrt{5}$	
	(vi) Calculate the area of ΔΑΡΒ.	
	$A = \frac{1}{2}bh = \frac{1}{2} \times 2\sqrt{5} \times 2\sqrt{5} = 10 \text{ square units}$	1 Mark: Correct answer.
(b)	Prove $(\sec \theta - \cos \theta)^2 = \tan^2 \theta - \sin^2 \theta$	
	LHS = $(\sec \theta - \cos \theta)^2$ = $\sec^2 \theta - 2\sec \theta \cos \theta + \cos^2 \theta$	2 Marks: Correct answer.
	$= \sec^{2} \theta - 2 + \cos^{2} \theta$ $= \sec^{2} \theta - 1 - (1 - \cos^{2} \theta)$ $= \tan^{2} \theta - \sin^{2} \theta = RHS$	1 Mark: Uses relevant trig identity.
(c)	Solve the equation $2\cos\beta = -\sqrt{3}$ for $0^\circ \le \beta \le 360^\circ$	
	$2\cos \beta = -\sqrt{3}$ $\cos \beta = -\frac{\sqrt{3}}{2}$ $\beta = 150^{\circ} \text{ or } 210^{\circ}$	2 Marks: Correct answer. 1 Mark: Calculates one answer or 30°
	Draw neat one third page sketches of the following equations on a separate set of axes. Show clearly the essential features of each graph.	2
	(i) $(x-1)^2 + y^2 = 36$	
	6 4 2 2 4 6 8 x	1 Mark: Correct answer.
	Circle with centre (1,0) and radius 6 units.	

(ii)	y = x+3	
	2 1 -7 -6 -5 -4 -3 -2 -1 -1	1 Mark: Correct answer.
(e) For v	what values of m is $-4x^2 + 3x + m$ a positive definite.	
Posit	tive definite $\triangle < 0$ or $b^2 - 4ac < 0$ $3^2 - 4x - 4xm < 0$ 9 + 16m < 0 16m < -9 $m < -\frac{9}{16}$	2 Marks: Correct answer. 1 Mark: Substitute into discriminant correctly

<u> </u>	stion 13 (15 marks)	Marks
(a)	A vertical tower AB with points B , C and D in a straight line on the ground is shown below. The distance CD is 100 metres. The angle of elevation to the top of the tower from point C is 35° and from point D is 60°.	TIZE IIS
	(i) Show that $AD = \frac{100 \sin 35^{\circ}}{\sin 25^{\circ}}$	
	$\angle CAD = 55' - 30'$ = 25' In $\triangle ADC$ use sine rule. $\frac{AD}{\sin 35'} = \frac{100}{\sin 25'}$ $AD = \frac{100 \sin 35'}{\sin 25'}$	2 Marks: Correct answer. I Mark: Calculates ∠CAD or uses the sine rule with one correct value.
	(ii) Calculate the height of the tower. Answer to the nearest metre.	
	$\sin 60^{\circ} = \frac{AB}{AD}$ $AB = \frac{100 \sin 35^{\circ} \sin 60^{\circ}}{\sin 25^{\circ}} = 117.5367488 \approx 118 \text{ m}$ The hardest statement in 118 meters.	2 Marks: Correct answer. 1 Mark: Shows some understanding of the problem.
(1.)	The height of the tower is 118 metres.	
(b)	A point A is 6 km south-west of a point O and a point B is 9 km on a bearing of 140° from O .	
	(i) What is the size of ∠AOB?	-
	$\angle BOS = 180 - 140$ (angle <i>OB</i> with <i>NS</i>) = 40 $\angle AOB = 45 + 40$	I Mark: Correct answer.
	=85	
	(ii) Find the distance AB correct to one decimal place.	
	$AB^{2} = 6^{2} + 9^{2} - 2 \times 6 \times 9 \times \cos 85^{*}$ $AB^{2} = 105.5871798$ $AB = 10.37242401$	2 Marks: Correct answer. 1 Mark: Uses the cosine rule with some
	AB = 10.4 The distance AB is about 10.4 km.	correct values
\vdash	(iii) Find the size of ∠BAO correct to the nearest degree.	
	$\cos \theta = \frac{(6^2 + 10.4^2 - 9^2)}{(2 \times 6 \times 10.4)}$ $\cos \theta = 0.50608$ $\theta = 59.59$	2 Marks: Correct answer. 1 Mark: Uses the
	$\theta = 59.59$ = 60'	correct values
	(iv) Find the true bearing of B from A.	
	True bearing of B from A is 105° T (60 + 45)	1 Mark: Correct answer,

Question 14(15 marks)	Marks
(a) If α and β are roots of the quadratic equation $2x^2 - 7x + 8 = 0$, find	
(i) $\alpha + \beta$	
$\alpha + \beta = -\frac{b}{a} = -\frac{-7}{2} = \frac{7}{2}$	1 Mark: Correct answer.
(ii) αβ	
$\alpha\beta = \frac{c}{a} = \frac{8}{2} = 4$	1 Mark: Correct answer.
(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$	
$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{3.5}{4} = \frac{7}{8}$	1 Mark: Correct answer.
(b) The function $y = f(x)$ is defined as follows:	
$f(x) = \begin{cases} 2^{x} & for \ x < 0 \\ 1 & for \ x = 0 \\ x^{-1} & for \ x > 0 \end{cases}$	
(i) Draw a sketch of the graph of $y = f(x)$.	
2	2 Marks: Correct answer. 1 Mark: Draws one of the functions correctly.
4 -2 2 4	
(ii) Evaluate $f(-3) + f(0) + f(3)$.	
$f(-3)+f(0)+f(3) = 2^{-3}+1+3^{-4}$ $= \frac{1}{8}+1+\frac{1}{3}=\frac{35}{24}$	I Mark: Correct answer.
(c) For the arithmetic sequence 4, 9, 14, 19,	
(i) Write the rule to describe the nth term.	
$a = 4$ and $d = 5$ for the sequence 4, 9, 14, 19, $T_n = a + (n-1)d$ $= 4 + (n-1) \times 5$	1 Mark: Correct answer.
≈ 5n-1	
(ii) What is the 25 th term?	
$T_{25} = 5 \times 25 - 1$ = 124	1 Mark: Correct answer.
(iii) Find the sum of the first 100 terms.	1

Preliminary Mathematics SOLUTIONS 2015

(c)	Find the value of k if the sum of the roots of $x^2 - (k-1)x + 2k = 0$ is equal to	2
	the product of the roots.	
	$\alpha + \beta = -\frac{b}{a} = -\frac{-(k-1)}{1} = (k-1)$	2 Marks: Correct answer.
	$\alpha\beta = \frac{c}{a} = \frac{2k}{1} = 2k$	1 Mark: Correctly
	Now $(k-1)=2k$ k=-1	calculates the sum or product
(d)	Solve $4^x - 9(2^x) + 8 = 0$	2
	$2^{x} \times 4^{x+1} = 0.5$	2 Marks: Correct
	$2^{x} \times (2^{2})^{x+1} = 2^{-1}$	answer.
	$2^{3x+2} = 2^{-1}$	1 Mark: Writes the
	3x+2=-1	terms to the base 2.
	3x = -3 or $x = -1$	
(e)	Evaluate $\sum_{r=1}^{3} 2^{1-r}$	1
	$\sum_{r=1}^{3} 2^{1-r} = 2^{0} + 2^{-1} + 2^{-2}$	1 Mark: Correct answer.
	$=1+\frac{1}{2}+\frac{1}{4}=1\frac{3}{4}$	

	S, =	$\frac{n}{2}[2a+(n-1)d]$	1 Mark: Correct answer.
	S ₁₀₀ =	$\frac{100}{2}[2\times4+(100-1)\times5]$	
	=	25,150	
(d)	Given	the parabola $x^2-4x-12=8y$	
	(i)	Write the equation in the form $(x-h)^2 = 4a(y-k)$	
	(x-2	x-12=8y $y^2-4-12=8y$	1 Mark: Correct answer.
,		$(x^2 = 8y + 16)^2 = 4 \times 2 \times (y + 2)$	
	(ii)	Find the coordinates of the vertex and focus.	
		x is (2, -2)	2 Marks: Correct answer.
	Focus	is (2, 0)	1 Mark: Focus or vertex
	(iii)	Find the equation of the axis of symmetry of the parabola.	
	Axis	of symmetry is $x=2$	1 Mark: Correct answer.
	(iv)	Draw a neat sketch of the parabola showing the above information.	
	:	y 4A 2- 4 -2 2 4 6 8 x	2 Marks: Correct answer. 1 Mark: Basic shape of the curve