South Sydney High School

2014 **YEAR 12**

ASSESSMENT TASK 2

Mathematics

	<u> </u>
General	Instructions

- Working time 1 lesson
- · Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Section 2
 Questions 1 5

Student Name:	

Section 1	
Section 2	
Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
TOTAL	

Total marks - 30

Section 1

4 marks

- Attempt Questions 1-4
- Answer on the multiple choice response sheet provided at the back of this paper

Section 2

26 marks

- Attempt Questions 1 5
- Allow about 45 minutes for this section

Section 1

4 marks

Attempt Questions 1 - 4

Use the multiple-choice answer sheet for Questions 1-4

- 1 What are the coordinates of the vertex of the parabola $x^2 4x 12 = 8y$?
 - (A) (-2,2)
 - (B) (0,2)
 - (C) (2,0)
 - (b) (2,-2)
- 2 What are the coordinates of the focus of the parabola $x^2 = 2(y-1)$?
 - (A) $(0,\frac{1}{2})$
 - (B) $(0,\frac{3}{2})$
 - (c) $(\frac{1}{2},0)$
 - (D) $(\frac{3}{2},0)$
- 3 What is the equation of the tangent to the curve $y = x^2 5x$ at the point (1, -4)?
 - (A) y = -3x 1
 - $(B) \quad y = -3x 7$
 - $(C) \quad y = 3x + 7$
 - (D) y = 3x 7
- 4 Consider the curve given by $y = \frac{1}{2}x^4 x^3$. What are the points of inflexion?
 - (A) only (0, 0)
 - (B) (0,0) and $(-1,\frac{5}{8})$
 - (C) (0,0) and $(1,-\frac{1}{2})$
 - (D) (0,0) and $(\frac{3}{2},-\frac{27}{32})$

5

Section 2

26 marks

1-5

Attempt Questions 11 16

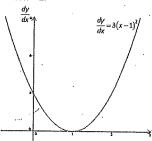
Allow about 2-hours-and 45 minutes for this section

Begin each question on a separate sheet or sheets.

All necessary working should be shown in every question.

- 1. For the parabola $x^2 = -16y$ find the
 - a. focal length
 - b. co-ordinates of the focus
 - c. equation of the directrix
- 2. For the parabola $(x+2)^2 = 8(y-4)$
 - Draw a neat sketch of the curve indicating the coordinates of the vertex, the coordinates of the focus and the equation of the directrix.
 - Write down the equation of the line through the focus and parallel to the x-axis.
 - c. Hence find the coordinates of the points where this line cuts the parabola.
- 3. The curve $f(x)=x^3+3x^2-9x-1$ is defined in the domain $-4 \le x \le 2$
 - Find the coordinates of the two stationary points and determine their nature.
 - b. Show a point of inflexion occurs at x = -1.
 - c. Sketch this curve in the domain.
- 4. The gradient function $\frac{dy}{dx}$ of a curve is illustrated in the graph below:

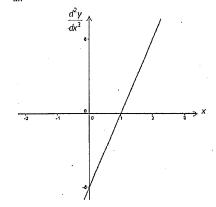
A stationary point is located at x = 1.



- a. Justify this statement by reference to the graph of $\frac{dy}{dx}$
- b. What is the sign of $\frac{dy}{dx}$ for all x, $x \ne 1$?
- c. What information does this give about the curve y = f(x)?

5. The graph of $\frac{d^2y}{dx^2}$ is shown below:

2014 HSC Mathematics



a. Copy and complete the table

x	0	1	2
sign of $\frac{d^2y}{dx^2}$			

b. What is the nature of the stationary point at x = 1? Give a reason for your answer.

END OF PAPER

1	$x^{2}-4x-12 = 8y$ $(x-2)^{2}-4-12 = 8y$ $(x-2)^{2} = 8y+16$ $(x-2)^{2} = 4 \times 2 \times (y+2)$	Vertex is (2, -2)	1 Mark: D
2	$x^{2} = 2(y-1)$ $(x-0)^{2} = 4 \times \frac{1}{2} \times (y-1)$ Vertex is (0,1) and focal length is $\frac{1}{2}$	Focus is $(0,\frac{3}{2})$	1 Mark: B
3	Concave down when $f''(x) < 0$ $f'(x) = 6x^{2} + 2x$ $f''(x) = 12x + 2$ $12x + 2 < 0$ $x < -\frac{1}{6}$		1 Mark: A
4	Possible points of inflexion $\frac{d^2y}{dx^2} = 0$ Check for change in concavity When $x = -0.1$ then $\frac{d^2y}{dx^2} = 6 \times -0.1 \times (-1.1)$ When $x = 0.1$ then $\frac{d^2y}{dx^2} = 6 \times 0.1 \times (0.1)$ When $x = 1.1$ then $\frac{d^2y}{dx^2} = 6 \times 1.1 \times (1.1)$ Hence $(0,0)$ and $(1,-\frac{1}{2})$ are points of inflexion	-1) < 0 1) > 0	1 Mark: C

1	For th	e parabola $x^2 = -16y$ find the		
	а	focal length		1
		For the parabola $x^2 = -4ay$ focal len	ngth is a units	
		$x^2 = -16y$		l
		4 <i>a</i> = 16		
		a = 4		
		The focal length is 4 units		
	b	co-ordinates of the focus		1
		For the parabola $x^2 = -4ay$		
		The parabola is concave down		
		The focus is at $(0,-a)$		
	1	$x^2 = -16y$		
		The focus is at (0,-4)		
	С	equation of the directrix		1
		For the parabola $x^2 = -4ay$ the equat	tion of the directrix is $y = a$	
		$x^2 = -16y$		
		The directrix is $y = 4$		
	For the	$e \ parabola \ (x+2)^2 = 8(y-4)$		
	Draw o	neat sketch of the curve indicating the		
		coordinates of the vertex	·	
		coordinates of the focus equation of the directrix		
	L.	equation of the unectrix		
	(x+	$(-2)^2 = 8(y-4)$	^ /	
		4a = 8		
		a=2	$(x+2)^2 = 8(y-4)$	
	ł	al length is 2 units		
	The	vertex is at (-2,4)	• (-2,5) Focus	
	The	focus is at (–2,6)	1-2,4) Vertex	
	The	directrix is y=2	y = 2 Directrix	
	The	line through the focus at (-2,6) parallel	to the x – axis	16
	is	y = 6	T MAYE	
		ind the points of intersection	a MAX 5 marks Sketch neat 1	
	Sub	$y = 6 in (x+2)^2 = 8(y-4)$	labelled 1	
		$(x+2)^2 = 8(6-4)$	Focal length 1	
		$\left(x+2\right)^2=16$	Vertex 1	
		$x+2=\pm 4$	Focus 1 Directrix 1	
		x = 2, -6	-	
	Poin	ts of Intersection (2, 6) and (-6, 6)	b Equation y=6 1	
	7 0111			1
	10111	2, 0, 0, 0,	c Intersection both correct 2	

	a Find the coordinates of the two stationary points and determine their nature. $f(x) = x^3 + 2x^2 = 0$					
		$f(x) = x^3 + 3x^2 - 9x - 1$, panies una			
		$f'(x) = 3x^2 + 6x - 9$		Derivatives	first second	1
		f''(x) = 6x + 6		Stationary pts	solved correctly	1 2
	1	For stationary points $f'(x)=0$			correct attempt	1
		$3x^2 + 6x - 9 = 0$		TP tested	one correct	1
		$x^2 + 2x - 3 = 0$				
		(x+3)(x-1)=0				
	1	x = -3, 1				
		7- 3,1				
		At x = -3	At x	=1		
		$f(x)=(-3)^3+3(-3)^2-9(-3)-1$		$=(1)^3+3(1)^2-9(1)^3$		
	1	=26		=(1) +3(1) -9()	1)-1	
		f''(x) = 6x + 6		6)=6 <i>x</i> +6		
i		=6(-3)+6		=6(1)+6		
		=-12		=12		
		<0		>0		
		∴ (−3, 26) is a maximum TP		(1, -6) is a mini	imum TO	
		<u> </u>		(-) 0) 13 4 111111	mum ip	
		Show a point of inflexion occurs at $x = -1$. For points of inflexion $f''(x) = 0$				
		6x+6=0		Second derivative Test concavity	0	1
		x=-1		rest concavity		1
		Test				
		x=-2 $f''(x)=-6$				
		x=0 f''(x)=6				
		∴ concavity changes				
j		There is a point of inflexion at $x = -1$				
	С	Sketch this curve in the domain.				
		}	; s	ketch ned	ıt, accurate	1
			į	cor	rect domain	1
				labi	elled	1
			į			
	1		1			
		(3,26)	1			
		$f(x) = x^3 + 3x^2 - 9x - 1$	į			
			!			
1		4 3 3 1				

The gradient function $\frac{dy}{dx}$ of a curve is illustrated in the graph below:	
$\frac{dy}{dx} = 3(x-1)^{2}$	
A stationary point is located at $x = 1$. Justify this statement by reference to the graph of $\frac{dy}{dx}$ The graph of $\frac{dy}{dx}$ shows that $\frac{dy}{dx} = 0$ at $x = 0$ which is the condition that all stationary	1
points must meet.	
What is the sign of $\frac{dy}{dx}$ for all x , $x \ne 1$? For all x values except $x = 1$ $\frac{dy}{dx}$ is positive because the graph of $\frac{dy}{dx}$ lies entirely above the x -axis.	1
What information does this give about the curve $y = f(x)$? The curve $y = f(x)$ is increasing for all $x < 1$, stationary at $x = 1$ and then increasing again for all $x > 1$	1
The graph of $\frac{d^2y}{dx^2}$ is shown:	
Copy and complete the table $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
b What is the nature of the stationary point at $x = 1$? The stationary point at $x = 1$ is a point of inflexion because the sign of $\frac{d^2y}{dx^2}$ changes when	2
moving from the LHS to the RHS of the stationary point.	