

5	OUTH SYDNEY	H.S
Stude	nt Name:	
	Section 1	
	Section II	
	Question 6	
	Question 7	/

Mathematics

General Instructions

- Working time 1 LESSON
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Ouestions 6 & 7

Total marks - 25 Weighting 15%

Section I

5 marks

- Attempt Questions 1-5
- Allow about 8 minutes for this section

Section II

20 marks

- Attempt Questions 6 & 7
- Allow about 30 minutes for this section

Section I

5 marks

Attempt Questions 1 - 5

Allow about 8 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5

- 1 What is the solution to the equation $4^x = 32$?
 - (A) 0.4
 - (B) 2.5
 - (Ć) 3
 - (D) 8
- What is the solution to the equation $\log_{e}(x+2) \log_{e} x = \log_{e} 4$?
 - (A) $\frac{2}{5}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{3}{2}$
 - (D) $\frac{5}{2}$
- 3 Ten kilograms of chlorine is placed in water and begins to dissolve. After t hours the amount A kg of undissolved chlorine is given by $A = 10e^{-kt}$. What is the value of k given that A = 3.6 and t = 5?
 - (A) -0.717
 - (B) -0.204
 - (Ĉ) 0.204
 - (D) 0.717
- 4 A circular metal plate of area $A \text{ cm}^2$ is being heated. It is given that $\frac{dA}{dt} = \frac{\pi t}{32} \text{ cm}^2/\text{h}$.

What is the exact area of the plate after 8 hours, if initially the plate had a radius of 6 cm?

(A) π

(B) 0.25π

(C) 36π

(D) 37π

- 5 A particle moves along the x-axis with acceleration 3t-2. Initially it is 4 units to the right of the origin, with a velocity of 2 units per second. What is the position of the particle after 5 seconds?
 - (A) 37.5 units to the right
 - (B) 37.5 units to the left
 - (C) 51.5 units to the right
 - (D) 51.5 units to the left

Section II

20 marks

Attempt Questions 6 & 7

Allow about 35 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Marks
2
1

(c) It is assumed that the number N(t) of ants in a certain nest at time $t \ge 0$ is given by

$$N(t) = \frac{A}{1 + e^{-t}}$$

where A is a constant and t is measured in months.

(i)	At time $t = 0$, $N(t)$ is estimated at 2×10^5 ants. What is the value of A?	1
(ii)	What is the value of $N(t)$ after one month?	1
(iii)	How many ants would you expect to find in the nest when t is very large?	1
(iv)	Find an expression for the rate at which the number of ants increases an any time t	1

(d) A swimming pool is being topped up automatically.

The rate $\frac{dc}{dt} = \frac{300}{t+1}$ where c is the capacity in litres and t is the time in seconds

(i)	How fast is the pool initially being filled?	1
	The pool initially contained 90 000 litres of water.	
(ii)	Find, to the nearest litre, the amount of water in the pool after 10	2
	minutes.	

Que	estion '	7 (10 marks)	Marks
(a)		the coordinates of the point on the curve $y = 2e^{3x} + 1$, where the tangent s curve is parallel to the line $12x - y + 1 = 0$.	3
(b)		rticle moves along a straight line so that its distance x , in metres from a point O is given by $x = \cos t + t$, where t is the time measured in ids.	
	(i)	Where is the particle initially?	1
	(ii)	When does the particle first come to rest?	2
	(iii)	Where does the particle first come to rest?	1
	(iv)	When does the particle next come to rest?	1
	(v)	What is the acceleration of the particle after $\frac{\pi}{3}$ seconds?	2

End of paper

·	
1 What is the solution to the equation $4^x = 32$?	
$4^x = 32$	
$(2^2)^x = 2^5$	1 M4 D
2x = 5x	1 Mark: B
x=2.5	
What is the solution to the equation $\log_{e}(x+2) - \log_{e} x = \log_{e} 4$?	
$\log_{e}(\frac{x+2}{x}) = \log_{e} 4$	
$\left(\frac{x+2}{x}\right) = 4$	
x+2=4x	1 Mark: B
3x = 2	
$x=\frac{2}{3}$	
3 Ten kilograms of chlorine is placed in water and begins to dissolve. A amount A kg of undissolved chlorine is given by $A = 10e^{-kt}$. What is that $A = 3.6$ and $t = 5$?	
$A = 10e^{-kt}$	
$3.6 = 10e^{-k \times 5}$	
$e^{-5k}=0.36$	
$-5k\log_{e}e = \log_{e}0.36$	1 Mark: C
$k = \frac{\log_{e} 0.36}{-5}$	
-5 = 0.2043302495 ≈ 0.204	
	<u> </u>
4 A circular metal plate of area A cm2 is being heated. It is given that 6 What is the exact area of the plate after 8 hours, if initially the plate had a	$\frac{d}{dt} = \frac{\pi t}{32} \text{ cm}^2/\text{h}$
What is the exact area of the plate after 8 hours, if initially the plate had a $A = \pi r^2 = \pi \times 6^2 = 36\pi$ cm ²	radius of 6 cm?
$A = \int \frac{\pi t}{32} dt$ When $t = 0$, $A = 36\pi$ $36\pi = \frac{1}{64}\pi 0^2 + c$	
$=\frac{1}{64}\pi t^2 + c \qquad c = 36\pi$	
04	l Mark: D
Hence $A = \frac{1}{64}\pi t^2 + 36\pi$	
$= \frac{1}{64}\pi \times 8^2 + 36\pi = 37\pi$	

5 A particle moves along the x-axis with acceleration $3t-2$. Initially it right of the origin, with a velocity of 2 units per second. What is the p particle after 5 seconds?				
a=3t-2				
$v = \frac{3t^2}{2} - 2t + c$				
When $t=0$ then $v=2$				
$2 = \frac{3 \times 0^2}{2} - 2 \times 0 + c \text{ or } c = 2$				
$v = \frac{3t^2}{2} - 2t + 2$				
$x = \frac{t^3}{2} - t^2 + 2t + k$	1 Mark: C			
When $t=0$ then $x=4$				
$4 = \frac{0^3}{2} - 0^2 + 2 \times 0 + k \text{ or } k = 4$				
$x = \frac{t^3}{2} - t^2 + 2t + 4$				
When $t=5$				
$x = \frac{5^3}{2} - 5^2 + 2 \times 5 + 4$				
=51.5 units				

Que	stion 6		
(a)	(i)	Differentiate $ (e^{2x} + 2)^{3} $ $ \frac{d}{dx} (e^{2x} + 2)^{3} = 3(e^{2x} + 2)^{2} \times 2e^{2x} $ $ = 6e^{2x} (e^{2x} + 2)^{2} $	2 Marks: Correct answer. 1 Mark: chain rule used correctly
(b)	(ii)	$\int e^{4x} dx$ $\int e^{4x} dx = \frac{1}{4} e^{4x} + c$	1 Mark: Correct answer
(c)		essumed that the number $N(t)$ of ants in a certain nest at the estimate $\frac{A}{1+e^{-t}}$ where A is a constant, t is measured in months	- '
	(i)	At time $t = 0$, $N(t)$ is estimated at 2×10^5 ants. What is the value of A ? $N(t) = \frac{A}{1 + e^{-t}}$ $2 \times 10^5 = \frac{A}{1 + e^0}$ $A = 4 \times 10^5$	1 Mark: Correct answer.
	(ii)	What is the value of $N(t)$ after one month? When $t = 1$ $N(t) = \frac{A}{1 + e^{-t}}$ $= \frac{4 \times 10^5}{1 + e^{-1}}$ $= 292423 \text{ ants}$	1 Mark: Correct answer.
	(iii)	How many ants would you expect to find in the nest when t is very large? When $t \to \infty$	1 Mark: Correct answer.
	1	$N(t) = \frac{A}{1 + e^{-t}}$ $= \frac{4 \times 10^5}{1 + e^{-\infty}}$ $= 400000 \text{ ants}$	

	,		
	(iv)	Find an expression for the rate at which the number of ants increases an any time t .	1 Mark: Correct answer.
		$N(t) = \frac{4 \times 10^5}{1 + e^{-t}} = 4 \times 10^5 \times (1 + e^{-t})^{-1}$	
		$\frac{dN(t)}{dt} = 4 \times 10^5 \times -1 \times (1 + e^{-t})^{-2} \times -1e^{-t}$	
		$=\frac{(4\times10^5)e^{-t}}{(1+e^{-t})^2} \text{ or } \frac{Ae^{-t}}{(1+e^{-t})^2}$	
(d)	A swi	mming pool is being topped up automatically.	
	There	ate $\frac{dc}{dt} = \frac{300}{t+1}$ where c is the capacity in litres and t is the	timo in annu de
	111011	dt t+1	time in seconds
	(i)	How fast is the pool initially being filled?	1 Mark: Correct
		$\frac{\mathrm{dc}}{\mathrm{dt}} = \frac{300}{t+1}$	answer.
		t=0	·
		$\therefore \frac{\mathrm{dc}}{\mathrm{dt}} = 300 \mathrm{L/s}$	
	(ii)	The pool initially contained 90 000 litres of water.	2 Marks: Correct
		Find, to the nearest litre, the amount of water in the pool after 10 minutes.	answer.
		$c = 300\ln(t+1) + k$	
		t = 0, c = 90000	1 Mark: correct
		$90000 = 300\ln(1) + k$	integration
		k = 90000	
		$\therefore c = 300 \ln(t+1) + 90000$	
		t = 10 mins = 600 secs	
		$\therefore c = 300 \ln(601) + 90000$	
		c = 91919.58 L	
		=91920L	

Que	stion 7		
(a)	where $12x - y' = 6$ $\therefore 6e^{3x}$ $3x$ $f\left(\frac{\ln \pi}{3}\right)$	the coordinates of the point on the curve $y = 2e^{3x} + 1$, we the tangent to this curve is parallel to the line $y + 1 = 0$. So $e^{3x} = m = 12$ $e^{x} = 12$ $e^{x} = 2$ $e^{x} = \ln 2$	Differentiates correctly 1 Achieves 1 $x = \frac{\ln 2}{3}$ Correct answer 1
(b)	`	ticle moves along a straight line so that its distance x , i O is given by $x = \cos t + t$, where t is the time mea	n metres from a fixed point sured in seconds.
	(i)	Where is the particle initially? Initially $t = 0$ $x = \cos t + t = \cos 0 + 0 = 1$	1 Mark: Correct answer.
	(ii)	When does the particle first come to rest? Particle comes to rest when $v = 0$ $v = \frac{dx}{dt}$ $0 = -\sin t + 1$ $\sin t = 1$ $t = \frac{\pi}{2} \text{ seconds}$	2 Marks: Correct answer. 1 Mark: Finds an expression for the velocity
	(iii)	Where does the particle first come to rest? When $t = \frac{\pi}{2}$ $x = \cos \frac{\pi}{2} + \frac{\pi}{2} = \frac{\pi}{2}$ metres	1 Mark: Correct answer.
	(iv)	When does the particle next come to rest? $\sin t = 1$ Next comes to rest at $t = \frac{\pi}{2}, \frac{5\pi}{2}, \dots \text{seconds}$ $\frac{5\pi}{2} \text{ seconds}$	1 Mark: Correct answer.

(v)	What is the acceleration of the particle after $\frac{\pi}{3}$ seconds? $a = \frac{dv}{dt}$ $= -\cos t$ When $t = \frac{\pi}{3}$ $a = -\cos \frac{\pi}{3} = -0.5$	2 Marks: Correct answer. 1 Mark: Finds exp for acceleration
-----	---	---