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Teacher: _!

Class:

FORT STREET HIGH SCHOOL

2014

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 3: TRIAL HSC

Mathematics
Time allowed: 3 hours
{(plus 5 minutes reading time)

Outcomes Assessed Questions

Chooses and applies appropriate mathematical techniques in order to 1-10

solve problems effectively

Manipulates algebraic expressions to solve problems from topic areas 11,12

such as inverse functions, trigonometry and polynomials

Uses a variety of methods from calculus to investigate mathematical 14,16

models of real life situations, such as projectiles, kinematics and growth

and decay .

Synthesises mathematical solutions to harder problems and 13,15

communicates them in appropriate form
Total Marks 100
Section] 10 marks Section | Total | Marks
Multiple Choice, attempt all questions, i 10
Allow about 15 minutes for this section . 01-Q10 , i
SectionIl 90 Marks Section | Total | Marks
Attempt Questions 11-16, - . Il 90
Allow about 2 hours 45 minutes for this section Q11 /15 I

: 11Q12 /15
General Instructions: Q13 /15 -
+ -Questions. 11-16 are to be started in a new booklet Q14 /15 ]
¢ The marks allocated for each question are indicated || Q15 /15 ]
¢ Allnecessary working should be shown in every Qi6 /15 )
question, Marks may be deducted for careless or Percent
badly arranged work.

* Board - approved calculators may be used .
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Section 1 Multiple Choice {10 Marks)

Question 1 .
Find logy32

a) 1.5

Question 2

Solve x24+4x~1=0

a), x=-2+45
b)) x=2+5
¢) -x=-242v5
d) x=-4%5
Question 3

Find the range of y = 3 + 2cos (2x — 3)

a) —2<ys<2

b —<ys

[FREN]

¢) 3<y<5

S di1<y<s

Circle Correct Answer - _ Question 6

uestion 4 ‘ : 51 - /
: What is the value of fS ™ dx
2 .
What is the derivative of I:xx—z .
a) =Inb
5
2-x2
2) (1+x2)? 1
b) glnS
2+42x2
2 (14x2)2 l\ 1
| c) glnlo
) 2~2x? _
c L
aE | d) SIn5
5
d) —2-2x2
232 .
(e Question 7

What is the perpendicular distance of the

Question 5 ' point (3,-2) from the line y = 4 — 3x
: ’ . ',A ' : 4 .
What are the solutions of I T
2cos0 = —V3for0<o<2m? 18
| " 7%
3
) Gand 3 9
= m : 7.
6] - and . : . d) T
71 11w
c) — and e .
Question 8
7
d) 5 and o |  The solution to (2 ~ 5)(6 = x) 2 0ls

a) (x:-25<x<6)
b) {x:25<x<6} ¢
 {x:x<25, x>-6)

d) {x: x<-25,x26}

/

Question 9

For what values of x Is the curve

y = 4x% — 3x2 concave down?

a) x>l
. 4
. 1
b) X<;
3
c) x>z /
d) x<0

Question 10

The sector below has an area of
307 square units

The value of r is

a) 5v6

<]
b)ﬁ

Not {0 scale



Section Il

90 Marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or

calculations

Question 11 { 15 Marks ) Use a SEPARATE writing booklet

Na) Factorise 3x? —16x + 5. .
\),\ Solve |5x+2| <3

c) Differentiate (3 — cos2x)S

d) Find the coordinates of the focus of the parabola

x2 =200y +3)

e) Find the equation of the normal to the curve y =

At the point where x=3,

dx

3 4
f) Evaluate 'fi Py

g) Sketch the region (x+3)2 + (y—2)? =16

(8]

32

Question 12 {15 Marks ) Use a SEPARATE writing booklet (—

a) Find the equation of the tangent to y = xcosx where x = 725 ;

-

b) :

A

line Ly has equation x +y = 4 and intersects the y axis at point A.
Line L has equation x —y = 8 and intersects the y axis at point C.
Ly and L, Intersect at point R,

The horizontal line through A intersects the vertical line through R, at S.

)ja/ Find the coordinates of point A and C.
Show that R has coordinates (6, -2).
State the equation of the line SR.
Find the gradient of the line L,.
Find the distance AR.
Show that triangle ARCis a right-angled isosceles triangle.
Find the equation of the circle with centre R, passing through
the points A and C: h

=2E=

—
=

c) Sketch the graph of y = 4cosx ford <0<2n

[ R S T O N




Question 13 { 15 Marks ) Use a SEPARATE writing hooklet '
' . ( 8 € Question 14 ( 15 Marks ) Use a SEPARATE writing booklet

a) Differentiate with respecttox: ..~ T TTTT——
. e : e a)
(i) xvx - 1 %
) e ) The diagram below shows the shading of a region bounded by the graph
(i) TR 2 y=3"" and the lines x=1and x =3. :
e 2% 4
_ e
(iif) sin3x \ 2 y=3
3sec?2x ‘ 4
b) Find ‘[W dx \ 2
/‘ "/,
o - , o , J ' <
. _ v ‘ 5 . >
B — ¢ . ’ :
B ‘ . 6] Copy and complete the following table g1v1ng your answer correct to
] : : : three decimal places:
40em| | } ] NOT TO . .
: . SCALE . . ] x 1 1.5 2 | 251 3°
y=3"1 1 11732}
A g D
60 om. . , v . . (i) Use Stmpson s Rule with five function values to apprommate the
- . ) shaded area to three decirnal places.
ABCD is a rectangle in which AB = 40 cm anid AD = 60 om. M is the ' . . . 3 2
midpoint ofBC and DP is perpendicular to AM, , - b) Consider the curve given by the equation y = x> — 6x* + 9x + 4
. Draw a neat sketch on your answer sheet. Hence: ‘ (i) Find the coordinates of the stationary points and determine
. : , their nature
) Prove that triangles ABM and APD are similar, 2
(i) - Calcilate the length of PD. . 5 . ' (i) Find the coordinates of any.point of inflexion.
"(lif)  Using Pythagoras’ Theorem in triangle 4PD show that AP =36 em.” =~ 1
‘ . e th ) . b infi tion.
(iv) By finding the two areas of the triangles ABMand APD, prove that 3 (i) Sketch the curve, showing only the above information

the area of the quadrilateral PMCD is 936 cm?, d
(iv) Determine the values of x for-which -‘g >0

Question 14 continues on the next page




Question 15 ( 15 Marks ) Use a SEPARATE writing booklet

)

‘Question 14 continued

On being retrenched from his job, Kevin receives a cash payment of $20 000,
c) : ' : .
Ore year later, he receives his first annual payout of $10 000, He continues to
: . n receive annual payouts of $10 000 every year thereafter,
The diagram shows the region bounded by the curve y =secx, the lines r== 3 ) ; .

and x = - -15, and the x-axis. . He places all of this money in his suitcase as he reccivgs it, and spends nope. .
. 3 . .

Af the end of every year, just before the next payout, Kevin spends 20% of the
money in his suitcase on a holiday.

Let 4, be the amount Kevin has in his suitcase immediately after his #™ anmual
payout. '

@] Show that Kevin has $26 000 in his suitcase immediately after his
first annual payout. :

(i)  Show that the money in Kevin’s suitcase immediately after his
3™ annual payout is given by

. =20 .8)° 8+0.82).
The region is rotated about the x-axis. Find the volume of the solid of revolution 4 000(0 8)_+10000 (1 +08+0.3 )
formed.
° (iif) ~ Show that 4, =50000~30000(0.8").

(iv)  After how many years will the amount in Kevin’s suitcase first -
exceed $48 0007

(v)  Whatis the most money Kevin will ever have in his suitcase?

End of Question 14 ‘ " b)

Two particles, A and B, move along a straight line so that their
displacements, x,and x;, in metres, from the origin at time ¢ seconds are

: . - ] given by the following equations respectively:

x,=12%+5 %y =688 17

@ Find two expressions for the velocities of particles 4 and B,

(i) ~ Which of the two particles is travelling faster at # = 1 second?

(i) At what time does particle B come to rest?

(iv)  Find the maximum positive displacement of particle B,



Question 16 { 15 Marks ) Use a SEPARATE writing booklet Question 16 continuéd

a) A 250mg tablet is dissolved in a glassv of water. After t minutes the amount of

¢) There are 5 red marbles and 4 biue marbles in a bag. Bill and Ben are playing a game in
undissolved tablet, U in mg, is given by the formula: ) g playing a g

which they take turns drawing a marble from the bag and then replacing it.
— —kt i . 3
= nstant. .
U =250e™, wherekisacons To win the game, Ben must draw a red marble and for Bill to win he must draw a blue
marble. They continue taking turns until there is a winner. Ben goes first.

(i) Calculate the value of k, correct to 4 decimal places, given that
10mg of the tablet remain after 15 minutes. 2 (i) Find the probability that Ben wins on his first draw. o 1
(i . Find the rate at which the tablet is dissolving In the glass of (i Find the probability that Ben wins in three or less of hs turns. 2
water after 10 minutes. »
Give your answer correct to two decimal places. 2 (i) Find the'prbbability that Ben wins the game. )

End of Question 16

END OF EXAMINATION

l Tx

The diagram shows the graphs of y =¢* and y =2+ 3¢ intersecting at the

point P. ’
i) Show that the curves intersect when 1
e —2¢"—3=0,
(i)  Hence show that the x-coordinate. of the point P is In3, 2
(iif)  Hence find the exact area of the shaded region. ' 3

Question 16 continues on the next page
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