

# **MATHEMATICS**

# PRELIMINARY COURSE 2009

# **ASSESSMENT TASK 2**

(35 marks)

**Time allowed: 50 minutes** 

### **Instructions**

- Attempt all questions
- All necessary working must be shown in all questions
- Approved calculators and templates may be used

QUESTION 1 (Start a new booklet)

[7 marks]

(a) Find the equation of the line shown below.

[1]



(b) X (-3,8) is the midpoint of the interval PQ. P has coordinates (2,6). Find the coordinates of Q.

(c) Fully simplify: 
$$\frac{\sin \theta}{\cos(90-\theta)}$$
 [1]

(d) In  $\triangle ABC$ , side AB is 17cm long, side BC is 5cm long and  $\angle BAC$  is 16°. Find the possible size(s) of  $\angle BCA$  correct to the nearest minute.

QUESTION 2 (Start a new booklet)

[6 marks]

(a) Fully simplify: 
$$\frac{\sin B}{\csc B} + \frac{\cos B}{\sec B}$$
 [2]

$$Q_{1} \stackrel{\text{Op}}{=} \text{If } \cos \theta = \frac{5}{8} \text{ and } 270^{\circ} < \theta < 360^{\circ} \text{ find the value of } \tan \theta$$
 [2]

(c) Solve 
$$\sqrt{3} \tan \theta = 1$$
 for  $0^{\circ} \le \theta \le 360^{\circ}$  [2]

[7 marks]

- (a) A surveyor stands at a point (X) in a field. After taking some measurements he records the following in his log book: Post A is 78 m from X on a bearing of 112° T. Post B is 64 m from X on a bearing of 195° T
  - (i) Draw a diagram to illustrate this information

[1]

(ii) What is the size of  $\angle AXB$ ?

- [1]
- (ii) Find the length, to the nearest metre, of fencing needed for the side AB [2]
- (b) Solve  $2\cos^2\theta = \cos\theta$  for  $0^{\circ} \le \theta \le 360^{\circ}$

[3]

### QUESTION 4 (Start a new booklet)

[7 marks]

- (a) Find the exact value of
  - (i) tan 120°

[1]

(ii)  $sec(-30^\circ)$ 

[1]

(b) Show that:  $\csc^2 \theta (\sec^2 \theta - 1) = \sec^2 \theta$ 

[2]

[3]

(c) A flagpole is steadied using two guy ropes attached to the top of the pole. The first guy rope is secured at point A making an angle of 16° with the ground. The second guy rope is secured at point B making an angle of 24° with the ground. Point B is 6m closer to the flagpole than point A. Find the height, h, of the flag pole to the nearest centimetre.



| QU                                                                                             | ESTION 5 (Start a new booklet)                                                               | [8 marks] |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|
| The points $Q$ , $R$ and $S$ have the coordinates $(1,5)$ , $(-3,2)$ and $(0,0)$ respectively. |                                                                                              |           |
| (a)                                                                                            | Find the gradient of the line $QR$                                                           | [1]       |
| (b)                                                                                            | Show that the equation of the line which passes through $Q$ and $R$ is given by $3x-4y+17=0$ | [2]       |
| (c)                                                                                            | Find the point P where $3x-4y+17=0$ cuts the x-axis                                          | [1]       |
| (d)                                                                                            | Find the length of PR (Answer in simplest form)                                              | [2]       |
| (e)                                                                                            | Find the size of the acute angle PR makes with the x-axis                                    | [1]       |
| (f)                                                                                            | Find the area of triangle PRS (Answer to 1 decimal place)                                    | [1]       |

## MARKING CRITERIA

#### QUESTION 1 [7 marks]

- (a) I mark for answer
- (b) 1 mark for one correct coordinate2 marks for both correct coordinates
- (c) I mark for answer
- (d) 1 mark for sine rule  $\frac{\sin \theta}{17} = \frac{\sin 16^{\circ}}{5}$ 1 mark for acute angle 3 mark for obtuse angle

#### **OUESTION 2 [6 marks]**

- (a) 1 mark for  $\frac{\sin B}{\frac{1}{\sin B}} + \frac{\cos B}{\frac{1}{\cos B}}$ 2 marks for answer
- (b) 1 mark if  $\tan \theta = \frac{\sqrt{39}}{5}$ 2 marks for  $\tan \theta = -\frac{\sqrt{39}}{5}$
- (c) 1 mark for one angle 2 marks for both angles

#### **QUESTION 3 [7 marks]**

- (a) (i) I mark for correct diagram
  - (ii) 1 mark for correct angle
- (iii) 1 mark for correct substitution into cosine rule
  2 marks for answer

(b) 1 mark for  $\cos \theta (2\cos \theta - 1) = 0$ 1 mark for 90°, 270° 1 mark for 60°, 300°

#### **OUESTION 4 [7 marks]**

- (a) (i) I mark for answer
  - (ii) 1 mark for answer
- (b) 1 mark for  $\frac{1}{\sin^2 \theta} \times \tan^2 \theta$ 2 marks for correct working
- (c) 1 mark for correct substitution into sine rule
  1 mark for a side
  1 mark for  $\sin 24^\circ = \frac{h}{BX}$

#### **QUESTION 5**

- (a) 1 mark for correct answer
- (b) 1 mark for  $y-5 = \frac{3}{4}(x-1)$ 1 mark for showing result
- (c) 1 mark for correct answer
- (d) 1 mark for correct substitution into distance formula
  2 marks for EXACT answer  $\frac{10}{3}$
- (e) 1 mark for answer
- (f) 1 mark for answer

#### **OUESTION 1 [7 marks]**

(a) y = x + 3 [1]

(b) 
$$(-3,8) = \left(\frac{2+x}{2}, \frac{6+y}{2}\right)$$

$$-3 = \frac{2+x}{2}$$
$$-6 = 2+x$$
$$x = -8$$

$$8 = \frac{6+y}{2}$$

$$16 = 6+y$$

$$y = 10$$

(c) 
$$\frac{\sin \theta}{\cos(90 - \theta)}$$

$$= \frac{\sin \theta}{\sin \theta}$$

$$= 1$$
[1]

Ambiguous case



$$\frac{\sin \theta}{17} = \frac{\sin 16^{\circ}}{5}$$

$$\sin \theta = \frac{17 \sin 16^{\circ}}{5}$$

$$\theta = 69^{\circ}35' \text{ or } 110^{\circ}25'$$

[3]

#### **QUESTION 2 [6 marks]**

- (a)  $\frac{\sin B}{\csc B} + \frac{\cos B}{\sec B}$  $= \sin B \times \sin B + \cos B \times \cos B$  $= \sin^2 B + \cos^2 B$ = 1 [2]
- (b) 8 opp.

$$\cos \theta = \frac{5}{8}$$
, 270° <  $\theta$  < 360°

$$opp. = \sqrt{8^2 - 5^2}$$
$$= \sqrt{39}$$

$$\tan \theta = -\frac{\sqrt{39}}{5}$$
 [2]

(c) 
$$\sqrt{3} \tan \theta = 1$$
 
$$\tan \theta = \frac{1}{\sqrt{3}}$$
 
$$\theta = 30^{\circ}, 210^{\circ}$$
 [2]

#### QUESTION 3 [7 marks]

(a) (i)



(ii) 
$$\angle AXB = 195^{\circ} - 112^{\circ}$$
  
= 83°

(iii)

$$a^{2} = b^{2} + c^{2} - 2bcCosA$$
  
 $AB^{2} = 78^{2} + 64^{2} - 2(78)(64)Cos83^{\circ}$   
 $AB = 94.67447637...m$   
 $AB = 95 m (nearest metre)$ 

[2]

(b)

$$2\cos^2\theta = \cos\theta$$
$$2\cos^2\theta - \cos\theta = 0$$
$$\cos\theta(2\cos\theta - 1) = 0$$

$$\cos \theta = 0$$
$$\theta = 90^{\circ}, 270^{\circ}$$

$$2\cos\theta - 1 = 0$$
$$\cos\theta = \frac{1}{2}$$
$$\theta = 60^{\circ},300^{\circ}$$

[3]

#### QUESTION 4 [7 marks]

(a) (i) 
$$\tan 120^{\circ} = -\sqrt{3}$$

(ii) 
$$\sec(-30^{\circ}) = \frac{2}{\sqrt{3}}$$

(b)

$$LHS = \csc^{2} \theta (\sec^{2} \theta - 1)$$

$$= \csc^{2} \theta \times \tan^{2} \theta$$

$$= \frac{1}{\sin^{2} \theta} \times \frac{\sin^{2} \theta}{\cos^{2} \theta}$$

$$= \frac{1}{\cos^{2} \theta}$$

$$= \sec^{2} \theta$$

$$= RHS$$
[2]

[1]

[1]

(c)

Let the top of the tower be X

$$\angle X = 24^{\circ} - 16^{\circ} (ext. \angle of triangle...)$$
  
= 8°

$$\frac{BX}{\sin 16^{\circ}} = \frac{6}{\sin 8^{\circ}}$$

$$BX = \frac{6\sin 16^{\circ}}{\sin 8^{\circ}}$$

$$= 11.88 cm$$

$$\sin 24^{\circ} = \frac{h}{BX}$$

$$h = BX \sin 24^{\circ}$$

$$h = 4.83 m$$
[3]

#### QUESTION 5 [8 marks]

(a)  $m_{QR} = \frac{2-5}{-3-1} = \frac{-3}{-4} = \frac{3}{4}$ 

(b) 
$$y - y_1 = m(x - x_1)$$
$$y - 5 = \frac{3}{4}(x - 1)$$
$$4y - 20 = 3x - 3$$
$$3x - 4y + 17 = 0$$
 [2]

(c) 3x-4y+17=0 3x-4(0)+17=0 3x = -17  $x = \frac{-17}{3}$ 

(d)

$$P\left(\frac{-17}{3},0\right)$$

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$   $d_{PR} = \sqrt{\left(-3 - \frac{-17}{3}\right)^2 + (2 - 0)^2}$   $= \sqrt{\left(-3 - \frac{-17}{3}\right)^2 + (2 - 0)^2}$   $= \sqrt{\frac{100}{9}}$   $= \frac{10}{3} units$ 

[2]

$$m_{PR} = m_{QR}$$

$$\tan \theta = \frac{3}{4}$$

$$\theta = 36^{\circ}52'$$

(f)

[1]

$$A = \frac{1}{2}ab\sin\theta$$

$$= \frac{1}{2} \left(\frac{10}{3}\right) \left(\frac{17}{3}\right) \sin 36^{\circ}52^{\circ}$$

$$= 5.7 units^{2}$$