Student Number:__

St. Catherine's School Waverley

February 2008
HSC ASSESSMENT TASK
EXAMINATION

Extension I Mathematics

Time allowed:

55 minutes

INSTRUCTIONS

- There are 2 sections of value 17, 21
- · Marks for each part of a question are indicated
- All questions should be attempted on the separate paper provided
- All necessary working should be shown
- Start each question on a new page
- Approved scientific calculators and drawing templates may be used badly arranged work.

Section A

17 Marks

[2]

[2]

1. Find the remainder when the polynomial $P(x) = x^3 - 4x$ is divided by (x+3)

2. For the polynomial equation $x^3 - 2x^2 + x + 5 = 0$

- (i) Show that one root of this equation lies in the interval -2 < x < -1. [1]
- (ii) Use Newton's method once to find an approximation of this root [2] starting with x = -1.5 as a first approximation.
- 3. When the plynomial $P(x) = x^4 3x^3 + ax^2 + bx 6$ is divided by (x+1) [3] the remainder is 8. If (x-3) is a factor of P(x), find the values of a and b.
- 4. For the polynomial $P(x) = x^4 3x^2 2x$
 - (i) Show that P(x) has a double zero at x = -1. [2]
 - (ii) Write P(x) as the product of its linear factors.
- 5. Show that (x-1)(x-2) is a factor of [2] $P(x) = x^{n}(2^{m}-1) + x^{m}(1-2^{n}) + (2^{n}-2^{m})$ where m and n are positive integers
- 6. The polynomial $P(x) = 8x^3 20x^2 + 6x + 9$ has two equal roots. [3] Find all the roots of P(x) = 0

Section B - Start a new page

21 Marks

1. Solve the equation $2\sin^2\theta = \sin 2\theta$ for $0 \le \theta \le 360^\circ$

[3]

[2]

[2]

- 2. (i) Write $\cos x \sqrt{3} \sin x$ in the form $R \cos(x + \alpha)$
 - (ii) Hence or otherwise solve the trigonometric equation

$$\cos x - \sqrt{3}\sin x = \sqrt{3}$$
 for $0^{\circ} \le x \le 360^{\circ}$

- 3. If $\tan \frac{\theta}{2} = t$, prove $\frac{1 + \sin \theta \cos \theta}{1 + \sin \theta + \cos \theta} = t$ [3]
- 4. A surveyor who is y metres south of a tower sees the top of it with an angle of elevation 8°. A second surveyor is x metres east of the tower. From his position the angle of elevation is 10° to the top of the tower. The two surveyors are 940m apart.

(i) Show that
$$y = h \cot 8^{\circ}$$
 [1]

(ii) Find the height of the tower to the nearest metre. [2]

$$tum 82 = \frac{y}{h}$$

$$y = tum 82h$$

$$2 = tum 10 h$$

- 5. Prove that $\frac{2\tan A}{1+\tan^2 A} = \sin 2A$ [2]
- 6. Find the general slution of $2\cos x = \sqrt{3}$ [3]
- 7. Prove that $\frac{\tan \theta + 1}{\sec \theta} \frac{\cot \theta + 1}{\cos ec\theta}$ is independent of θ [3]

End of Task

Page 3 of 3

Student Number:

St. Catherine's School Waverley

February 2008 HSC ASSESSMENT TASK

HSC ASSESSMENT TASK EXAMINATION

Extension I Mathematics Solutions

Time allowed:

55 minutes

INSTRUCTIONS

- There are 2 sections of value 17, 20
- Marks for each part of a question are indicated
- All questions should be attempted on the separate paper provided
- All necessary working should be shown
- Start each question on a new page

Page 1 of 4

Course:

Marking Scheme for Task:

Page no. of

Academic Year: 2007-8

Solutions	Marks	Comments
Q_1 $\chi^3 - 4\chi = (\chi + 3)(\chi^2 - 3\chi + 5) - 15$		
: remainder is -15		
* or by long division x - 3x +5		·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	
* Of M-3)=-15		
Q2 (1) for the function $f(x) = x^3 - 2x^2 + x + 5$		
Q2 (1) for the function $f(x) = x^3 - 2x^2 + x + 5$ f(2) = -8 - 8 - 2 + 5 < 0 f(-1) = -(-2 - 1 + 5) > 0		
$f(x) = 0 \text{ has a root for } -2 < x < -1$ $f'(x) = 3x^2 - 4x + 1$		
(1) Newton's Method. $a_1 = a - \frac{f(a)}{f'(a)}$		
Let $a = 7.5$: $a_1 = 7.5 - \frac{f(4.5)}{f'(4.5)}$		
$f(x) = -\frac{35}{8} \qquad f'(1.5) = \frac{55}{4}$ $\therefore q_1 = 7.5 - \frac{35}{8}$		
$=7.5 + \frac{7}{32}$		
= -1.18	1	

Page no. of

Academic Year: 2007-8

Marking Scheme for Task:	Academic Yea	
Solutions Solutions	Marks	Comments
Q3 P(x) = x 4-3x3+an+bx+6		
P(-1) = 1 + 3 + a - b - 6 = 8	1	
: a - b = 10 (D)	1	
$P(3) = 81 - 81 + 90 + 36 - 6 = 0$ $\therefore 90 + 36 = 6 - \frac{2}{3}$	1	<u> </u>
. 9a+sv - e - C		
Now Ox3+2) 12a = 36		
2a = 3	1	
and b = -7	·,	
8. 11 M. 44 342		
$Q_{4}(t) \qquad P(x) = x^{4} - 3x^{2} - 2x$	1	
P(-1) = 1 - 3 + 2 = 0	,	
$\rho(x) = 4x^3 - 6x - 2$		
f'(x) = -4 + 6 - 2 = 0	1	
i. X=-1 is a double root of P&		
$(n) \qquad \rho(x) = (x+i)^{2} \mathcal{O}(x)$		
** $\chi^4 - 3\chi^2 - 2\chi = (\chi^2 + 2\chi + 1)(\chi^2 - 2\chi)$		
$= x(x-2)(x+1)^{2}$	2	
OR clearly $P(x) = X(X^3 - 3X - 2)$		
$= \chi \left(\chi + 1 \right) \left(\chi - \chi \right)$	1	1
Clearly $f(x) = x(x+1)^{2}(x-2)$ Since product groots of $x^{3}-3x-2$ is 2.		
Since product groots of 12-3x-2	1,	
' /s 2.	'	

Course:

Page no. of

Course:		
Marking Scheme for Task:	Academic Ye	
Solutions	Marks	Comments
$ \frac{QS}{M} = \frac{1^{n}(a^{m}-1) + 1^{m}(1-a^{n}) + a^{n} - a^{m}}{1 + 1 - a^{n} + a^{n} - a^{m}} $		
$= 0$ $\therefore (\chi - 1) \text{ is a factor.}$	1	
$P(2) = 2^{n}(2^{m} - 1) + \mathbf{Z}^{m}(1 - 2^{n}) + (2^{n} - 2^{m})$ $= 2^{n+m} - 2^{n} + 2^{m} - 2^{m+n} + 2^{n} - 2^{m}$		
$= 0$ $\therefore (x-1) \text{ is a factor}$		
: (x-1)(x-2) is a factor of P60.	1	
$\frac{d6}{d6} \frac{d6}{d6} = 8x^3 - 20x^2 + 6x + 9$ Let the roots be α, α, β		
Pun al morte = 2d+B= = -0		
Sum of rooks $2x = x^2 + 2x\beta = \frac{3}{4}$ Product of rooks $= x^2\beta = \frac{9}{8}$		
from 0 B = 2-20		
Sub in (2) $\alpha^2 + \lambda \alpha \left(\frac{5}{2} - \lambda \alpha\right) = \frac{3}{4}$ $\alpha^2 + 5\alpha - 4\alpha^2 = \frac{3}{4}$		
$\alpha' + S\alpha - 4\alpha = \frac{3}{4}$ $-3\alpha^2 + S\alpha = \frac{3}{4}$		
$-12x^{2}+20x-3=0$		
Qx - 20x +3 =0	1	
(64-1)(2x-3)=0		
man $\binom{3}{2} = 0$: $\frac{3}{2}$ is the double zero.		
Sub in (1) $\beta = \frac{5}{2} - 3 = -\frac{1}{2}$	1	
: roots are $x = \frac{3}{2}, \frac{3}{2}, \frac{7}{2}$		

Page no. of

Academic Year: 2007-8 Marking Scheme for Task: Comments Marks Solutions Section B 2 Sin'0 = Sin20 2 Sm20 - Sm20 = 0 2 Sin 10 - 2 Sin 0 Cool = 0 2 Sm 0 (Sm 0 - Cool) = 0 : Sind =0 or Sind-Cod =0 $\theta = 0,180,360$ Sind = $\cos\theta$ (cos $\theta \neq 0$) or 0, T, 2TT \$=.45°, 225° or 亚, 5亚 : 0 = 0°,45°,180°,225°,360° Q2 (1) $Cosx - \sqrt{3} sinx$ (Cosx God - Sux Sind) $Cosx - \sqrt{3} sinx = 2 Cos(x + 60°)$ d = 60°1=2 Imark d=60° (mark Cool - Vasing = Va $\frac{1}{12} 2 \cos (x + 60^{\circ}) = 13$ $\cos (x + 60^{\circ}) = \frac{\sqrt{3}}{2}$ $x + 60^\circ = \cos^{-1}\left(\frac{13}{2}\right)$ $x + 60^{\circ} = 30^{\circ}, 330^{\circ}, 390^{\circ}, -- \therefore x = -20^{\circ}, 270^{\circ}, 330^{\circ}, -- x = 270^{\circ}, 330^{\circ}$

Course:

Page no. of

Course.		
Marking Scheme for Task:	Academic Ye	
Solutions	Marks	Comments
$\frac{Q_3}{l + S_{IN}\theta + C_{ID}\theta} = \frac{l + \frac{2L}{l + L^2} - \frac{l - L^2}{l + L^2}}{l + \frac{2L}{l + L^2} + \frac{l - L^2}{l + L^2}}$	1	
$=\frac{1+\xi^2+2\xi+1-\xi^2}{1+\xi^2+2\xi-1+\xi^2}$	1	
$= \frac{2t^2 + 2t}{2 + 2t}$		
$= \frac{at(t+t)}{a(t+t)}$ $= t$	1	
$ \begin{array}{ll} $	1	
(11) now similarly $x = h \cot i0^{\circ}$ and by pythagoras theorem $\left(h \cot 8^{\circ}\right)^{2} + \left(h \cot i0^{\circ}\right)^{2} = 940^{2}$		
$h^{2} Cot^{2} 8^{\circ} + h^{2} Cot^{2} 10^{\circ} = 940$ $h^{2} = \frac{940^{2}}{Cot^{2} 8^{\circ} + Cot^{2} 10^{\circ}}$		

 $h^2 = 10672.60126...$ h = 103m (nearestm)

Page no. of

Marking Scheme for Task:	Academic Ye	ar: 2007-8
Warking Scheme for Task. Solutions	Marks	Comments
$ \frac{05}{1 + \tan A} = \frac{2 \cdot \frac{SimA}{CosA}}{5ec'A} $ $ = \frac{2SinA}{CosA} $ $ = \frac{2SinA}{CosA} $ $ = \frac{2SinA}{CosA} $ $ = 2SinA CosA $ $ = 2SinA CosA $ $ = Sin 2A $		
$ \frac{Q6}{Cos x} = \sqrt{3} $ $ \frac{\sqrt{3}}{2} $ $ \frac{1}{2} $	0-30,,	
$ \frac{Q7}{SecO} + \frac{1}{CosecO} = \frac{SinO + 1}{CosecO} = \frac{SinO + 1}{SinO} = \frac{1}{SinO} = \frac{1}{SinO$	3	

7

.