

,	
O() ())	
Student Name:	•

St. Catherine's School Waverley

27th August 2009 PRELIMINARY ASSESSMENT TASK 3

Weighting 20%

Extension | Mathematics

Time allowed:

55 minutes 46 marks

Total marks:

INSTRUCTIONS

- · Marks for each part of a question are indicated
- All questions should be attempted in the booklet provided
- All necessary working should be shown
- Start each question on a new page
- Approved scientific calculators and drawing templates may be used
- Marks may be deducted for badly arranged work.
- · Diagrams should be drawn using PENCIL AND RULER

Question 1 Marks

Differentiate (leaving answers in simplest, factorised form):

(i)
$$y = \frac{3}{5x^2}$$

(ii)
$$y = \frac{5x^4 - 3x^2 + 2}{x}$$

(iii)
$$f(x) = \sqrt[3]{x^4} + 3$$

$$(iv) y = \frac{x^2}{1-x}$$

$$(v) y = x\sqrt{3x - 1}$$

Question 2 Start a new page

- (i) Find the equation of the tangent to the curve $y = 2x^2 3x + 1$ at the point (-1, 6).
- Find the gradient of the normal to the curve $y = 2\sqrt{x-2}$ at the point where x = 6.

Question 3 Start a new page

A can of coke is in the shape of a closed cylinder with height h cm and radius r cm.

- (i) The volume of the can is 500 cm^3 . Find an expression for h in terms of r.
- (ii) Show that the surface area, $S cm^2$, of the can is given by

$$S = 2\pi r^2 + \frac{1000}{r}.$$

2

iii) If the area of metal used to make the can is to be minimized, find the radius of the can.

Question 4 Start a new booklet

Marks

2

2

3

2

2

Use mathematical induction to prove that, for n > 0,

$$1+3+3^2+\ldots+3^{n-1}=\frac{1}{2}(3^n-1).$$

Question 5 Start a new page

A sales team sells 1200 calculators in its first month of operation. They plan to increase their sales by 150 calculators each month. How many calculators do they plan to sell:

- (i) in the last month of the second year of operation;
- (ii) over the entire two-year period?

Question 6 Start a new page

A ball is dropped from a height of 2 metres onto a hard floor and bounces. After each bounce, the maximum height reached by the ball is 75% of the previous maximum height. Thus, after it first hits the floor, it reaches a height of 1.5 metres before failing again, and after the second bounce, it reaches a height of 1.125 metres before falling again.

- (i) What is the maximum height reached after the third bounce?
- (ii) What kind of sequence is formed by the successive maximum heights?
- (iii) What is the total distance travelled by the ball from the time it was first dropped until it eventually comes to rest on the floor?

Question 7 Start a new page

For the function $y = \frac{x^2 + 3}{x(x-3)}$

- (i) Find any stationary points and determine their nature.
- (ii) Sketch the graph of this function showing any vertical and/horizontal asymptotes.
 - ii) State the domain and range.

End of test

flar ##

	Jean #1		7-2	
Qn	Solutions		Marks	Comments: Criteria
	$y = \frac{3}{5x^{2}}$ $y = \frac{3}{5} \cdot \frac{1}{x^{2}}$ $y = \frac{3}{5} \cdot x^{-2}$	• .		
	$\frac{dy}{dx} = \frac{-6}{5}x^{-3}$ $= \frac{-6}{5x^3}$			
	$y = \frac{5x^{4} - 3x^{2} + 2x^{4}}{x}$ $y = \frac{5x^{4} - 3x^{2} + 2x^{4}}{x^{2}}$ $y = 5x^{3} - 3x + 2x^{-1} *$		2	of for correct derivative
	$\frac{dy}{dx} = 15x^{2} - 3 - 2x^{-2}$ $= 15x^{2} - 3 - \frac{2}{x^{2}}$		2	0.5 for ** 1 correct derivative 0.7 for correct (4VX) -1 if not written in correct form i.e. 4 VX
	$= \frac{4\sqrt[3]{x}}{3}$			i.e. 4 VX

Ul continued

Qn	X (Continued Solutions	Montes	Comment C. II.
	$(iv) y = \frac{x^2}{1-x}$	Marks	Comments: Criteria
,	(-x		
	$ et u = x^{2}$ $u' = 2x$ $\sqrt{= -1}$		
	u'= 2× /= -1		
	$y' = \frac{u'v - v'u}{v^2}$		
	$= \frac{2x(1-x)1(x^2)}{(1-x)^2}$	3	
	$= \frac{2x - 2x^{2} + x^{2}}{(1-x)^{2}} *$		
	$= \frac{2x - x^2}{(1-7)^2}$		from * to 0
	$=\frac{\chi\left(2-\chi\right)}{\left(1-\chi\right)^{2}}$		
	$(y) y = x \sqrt{3x - 1}$		
	let $u = x$ $v = (3x - 1)^{2}$ $v' = \frac{1}{2}(3x - 1)^{2}$		
	$V' = \frac{3(3x-1)^{-1/2}}{2}$	3	
	y' = u'v + v'u = 1. $(3x-1)^{k} + \frac{3(3x-1)^{k}}{2}$		
	$= (3x-1)^{-1/2} \left[(3x-1) + \frac{3x}{2} \right]$		
	$= (311 - 1)^{-1/2} \left[312 - 1 + \frac{371}{2} \right]$		
	$=(3x-1)^{-1/2}(6x-2+3x)$		

On	Solutions	Marks	Comments: Criteria
	$y' = \frac{(9x - 2)^{-1/2} (9x - 2)}{2\sqrt{3x - 1}}$		-0.5 if not supplied to @
	(i) $y = 2x^{2} - 3x + 1$ $y' = 4x - 3$ $at x = -1$ $y' = -4 - 3$ $y' = -7$ (gradient of fargent $y - y = m(x - x_{1})$ $y - 6 = -7(x - 1)$ $y - 6 = -7x - 7$ $72 + y + 1 = 0$ is the equation of the fargent. $y = 2\sqrt{x - 2}$ $y = 2(x - 2)^{x}$ $y' = 2x + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	*	1 mark for correct derivative I mark for correct derivative I mark for pradhet of known of home for graduation of format.

Qn	Solutions	Marks	Comments: Criteria
(3)	u) h		
	N= Trh = 500 / 1)	2	,
	(ii) Surface area = 2TTr + 2TTr X = 2TTr + 2TTr (SDO)		
	from () S = 2T/7 1000 X		
			V means 0.5 mark
	$\frac{dS}{dr} = 0 \times \frac{dS}{dr} = 0$ i.e. $\mu \pi r - \frac{1000}{r^2} = 0$		
	$4\pi r^{3} - 1000 = 0$ $4\pi r^{3} = 1000$ $r^{3} - 1000$	11.	
	$r^{3} = \frac{1000}{471}$ $r^{3} = 79.577 = -1$ $r^{2} = 4.30/270 = -1$	4	
	$\frac{d^{2}S}{dr^{2}} = 4\pi + 2000r^{-3}X$ $= 4\pi + \frac{2000}{r^{-3}}X$ when $r: 6.9278, \frac{d^{2}S}{dr^{2}} > 0$		

	,		
Qn	Solutions	Marks	Comments: Criteria
04	Step 1: Prove that Statement is four for n=1		V = I work.
	LHS = 3^{n-1} RHS = $\frac{1}{2}(3^{n}-1)$		
	=30 =1(3-1)		
	=1		
	LHS = RHS Obatement is true for n=1		
	Oh 3. Assume that statement is		
	is. $1+3+3++3++=\frac{1}{2}(3^{k}-1)$	4	
	cten3: Prove that statement is true	1	•
	for $n=k+1$ i.e. $1+3+3^2+\cdots+3^{k-1}+3^{k+1-1}=\frac{1}{2}(3^{k+1}-1)$		
	$1+3+3^{2}+\cdots+3^{k+1}+3^{k}=\frac{1}{2}(3^{k+1}-1)^{k}$	¥	
	4H= 1 (36-1) + 3k V		
	$=\frac{1}{2}.3^{k}-\frac{1}{2}+3^{k}$		
	$=\frac{3}{2}.3^{4}-\frac{1}{2}$		
	$=\frac{3!3^{k}}{2}-\frac{1}{2}$		
	$=\frac{3^{k+1}}{3}-\frac{1}{2}$	}	
	$= \frac{3^{k+1}}{2} - \frac{1}{2}$ $= \frac{1}{2} \left(3^{k+1} - 1 \right) = RHS$		

C	24 Continued Solutions		· ·
Qn	Solutions	Marks	Comments: Criteria
	Step 4: If statement is time for n=k, then it is also time for n=k+1 is. if statement is time		
	for n=1, then it is true for n=141 =2		
	and for n=2+1 =3 and so on : Statement is fue for n>0		
	1200 + 1350 + 1500 + 1650 +		V= I wat.
25	i. the 24th month		
	The series is an AP - d= 12-1,= 13-12	2	
	Tn = a + (n-1)d /		
	$T_{24} = 1200 + 23 \times 150$ $= 4650$ They plan to sell 4650 calculators $= 1000 + 2400$		-1 for small eror in formula.
	$\int_{24}^{24} = \frac{24}{2} \left(1200 + 4650 \right)$ $= 70200$	2	,
	Thy plan to sell for00 calculators over the entire 2-yr paired.		

	0.14	156 -	
Qn	Solutions	Marks	Comments: Criteria
Q6 .	Ism Ism Inst Inst		V=1 mark.
1 1	2m, 15m, 1.125m,		Alterate method of solution;
	Maximum height reached after the 3rd bounce is 75% of 1.125 = 75 × 1.125 = 0.84375	2	Tn=ar 1-1 Ty = 2(0.75) 4-1 = 0.84375
(iii) 7 (1st) 3	The sequence formed is a feometric programion (5.P.) V There are 2 series formed: 2, 1.5, 1.125; 0.84375, (falling) 1.5, 1.125, 0.84375, (rising)		Other wetwoods of solution 1/2 (1.5) +2 =14m
Sac	for 18+ series = $\frac{9}{1-v}$ = $\frac{2}{1-0.75}$ for and series = $\frac{1.5}{1-0.75}$ The total distance browellast is 14	3	
` 	The total distance encuelled in 14	· / / me	fres

Qn	Solutions	Marks	Comments: Criteria
07	$iny = \frac{x^2 + 3}{x(x-3)}$		
	$y = \frac{x^2 + 3}{x^2 - 3n}$		
	$ et u = x^2 + 3 _{v = x^2 - 3x}$:	
	u'=2x $v'=2x-3$	2	Correct st pts
	$y' = \frac{u'v - v'u}{v^2}$	1	Correct nature
	$-2\pi (x^2-3x) - (2x^2-3)(x^2+3)$	1	correct assymptotic
	$= \frac{2x(x^2-3x)-(2x-3)(x^2+3)}{(x^2-3x)^2}$	1	Correct Shape graph
	$= 2x^3 - 6x^2 - 2x^3 - 6x + 3x^2 + 9$	1	Correct domain
	$= \frac{2x^3 - 6x^2 - 2x^3 - 6x + 3x^2 + 9}{(x^2 - 3x)^2}$	/	correct range.
,	$y' = \frac{-3x^2 - 6x + 9}{(x^2 - 3x)^2} = \frac{-3(x + 3)(x - 1)}{(x^2 - 3x)^2}$		
	Stationary points occuraty =0,		
	$i_{x} \cdot \frac{3x^{2} - 6x + 9}{(x^{2} - 3x)^{2}} = 0$	**************************************	
	$\frac{-3x^{2}-6x+9=0}{-3}$		
	$x^{2} + 2x - 3 = 0$		
	(z+3)(x-1)=0		
	x=-3, $x=1$.		
	Test for nature:	.	
	$\frac{2 -4 -3 -1}{y'(0)}$ is	•	ş ;
1	a minimum turning point	.	,

De continued

J. of the Common		
Montro		
Solutions	2 x = 1 2 0 0 - 1 2 4 20 0 - 1 2 4 20 0 - 1 2 4 20 0 - 1 2 4 20 0 - 1 2 4 20 0 - 1 2 4 20 20 20 20 20 20 20 2	1