

St Catherine's School

Year: 12

Subject: Extension II Mathematics

Time Allowed: 55 mins

Assessment Task 1 - 2006

Student number: 16361275

Directions to candidates:

- All questions are to be attempted.
- All questions are of equal value.
- All necessary working must be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- Approved calculators and geometrical may be used.
- Place the question paper inside your exam booklet.
- State the student Number in your question paper.

· IEA	CHER'S USE ONLY Total Marks
A	
В	
TOTAL	

- 52+52i

- If $z = \sqrt{2+i}$ and $w = \sqrt{3} i$, find the modulus and argument of the following:
 - (a) (i) z
 - (ii)
 - (iii)

- Q.2. Sketch the locus of z in each of the following:
 - |z-2| = |z-4i|

(ii) $\operatorname{Arg}_{z}(z-1) = \frac{\pi}{4}$

(iii) Arg $(1-z) = \frac{\pi}{4}$

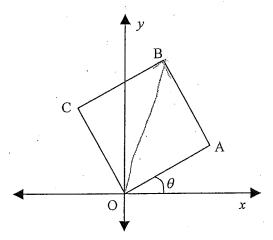
is a real number, where z = x + iy

- Q.3 If α, β and γ are the roots of the equation $x^3 + 5x 1 = 0$, find the polynomial equation, whose roots are
 - α^2, β^2 and γ^2 (i)

- $2\alpha + 3$, $2\beta + 3$ and $2\gamma + 3$ (Do not simplify)

Q.4. OABC is a square in the complex plane and the point A represents the complex number $z = \cos \theta + i \sin \theta$

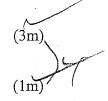
State in modulus argument form (in terms of θ) the complex numbers represented by the points B and C.



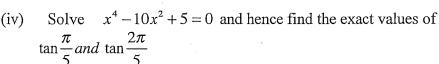
- Q.5 (i) Given that 1+i is a root of the polynomial equation $x^4 + 3x^2 6x + 10 = 0$, solve the equation over the Complex Number System
- Q.6 Show that $G(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ cannot have a double root

Q.4— (i) Use De Moivre's theorem and the expansion of $(\cos \theta + i \sin \theta)^5$ to express $\cos 5\theta$ in terms of $\cos \theta$ and $\sin \theta$ and $\sin 5\theta$ in terms of $\cos \theta$ and $\sin \theta$.

(Note:
$$(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$$



- (ii) Hence show that $\tan 5\theta = \frac{5 \tan \theta 10 \tan^3 \theta + \tan^5 \theta}{1 10 \tan^2 \theta + 5 \tan^4 \theta}$
 - (iii) Show that $\tan \frac{\pi}{5}$, $\tan \frac{2\pi}{5}$, $\tan \frac{3\pi}{5}$ and $\tan \frac{4\pi}{5}$ are the roots of the equation $x^4 10x^2 + 5 = 0$



END OF PAPER