

Student Numb	Ç1 - N
نمامصنا الشمامة نطا	rain and the state of the state
STREETH AND ITHER	*F* 4:.
Deductie Halling	/1 <u> </u>

Year 12 Assessment Task 2

Mathematics

Time allowed: 3 hr

Reading time: 5 min

General Instructions

- Attempt ALL questions
 Write your
 Student NUMBER at the top of this page and on each writing booklet.
 Calculators may be used

Sections Q1-5 in Booklet 1 Q6-10 in Booklet 2

Total marks

Question 1 (12 marks)

a) Evaluate $\sqrt{4.28+9.714}$ to 1 decimal place	
b) Simplify $\frac{x}{5} - \frac{x-1}{23}$; c) Solve for x : $3x^2 - 9x - 12 = 0$	
d) Solve and graph on the number line: $12-2x>4$	
e) Factorise $9x^2-16$	
f) Graph on the number plane: $y= x+1 $	

Question 2 starts on the next page

Question 2 (12 marks)

(Start a new page)

a) Find a if
$$\sqrt{75} - \sqrt{3} = \sqrt{a}$$

$$x^2 - 4x \le 0$$

c) Express in simplest form:
$$\frac{x^3-8}{x^2-4}$$

d) Simplify
$$\frac{4}{x-3} - \frac{x-2}{x^2 - x - 6}$$

e) Prove that
$$\frac{\sin^3 \theta}{\cos \theta} + \sin \theta \cos \theta = \tan \theta$$

Question 3 (12 marks)

(Start a new page)

2

2

2

3

3

a) The line k cuts the x-axis at A(6,0) and has gradient $m = \frac{4}{3}$	-
--	---

- i) Show that 4x 3y 24 = 0 is the equation of line k
- ii) Find the co-ordinates of B, the y-intercept of line k

2

1

1

1

2

2

3

- iii) Draw a neat sketch showing line k and points A and B on the number plane.
- iv) Find the distance of the origin from line k
- v) Line j is perpendicular to line k and also passes through A(6,0). Find its equation.
- b) Sketch the region y > 2x + 1
- c) Sketch the graph of the function:

 $f(x) = \sqrt{9 - x^2}$

Specify the range and domain of this function

Question 3 starts on the next page

Question 4 starts on the next page

Question 4 (12 marks)

(Start a new page)

a) Farmer Brown's paddock, shown shaded below, is bounded by the river and 3 straight fences. Use Simpson's method to find the area of the paddock to the nearest m^2 .

b) Differentiate:

i)
$$5x^{-4}$$

1

ii)
$$\frac{x^6 - 3x^2 + 4}{x^4}$$

2 .

)

iii)
$$\sqrt{3x-2}$$

2

c) Find the equation of the tangent to the curve $y = 4x^2 - 6x$ at the point P(2, 4)

3

Question 5 starts on the next page

Question 5 (12 marks)

(Start a new page)

a) Find the value of:

i)
$$\int_{-1}^{3} (x^2 + 5) dx$$
 2

ii)
$$\int_{2}^{3} (9x-5)^{3} dx$$
 2

iii)
$$\int_4^9 \sqrt{x^3} dx$$
 2

i) Draw a neat sketch of the curve
$$y = x^3$$
 for $-2 \le x \le 2$

ii) Hence or otherwise evaluate
$$\int_{-2}^{2} x^3 dx$$
 3

Question 5 continued

Volume
c) A student is required to find the area enclosed when the shaded area is rotated around the y-axis.

Her solution starts:

$$V = \pi \int_{a}^{b} x^2 dy$$

$$\therefore V = \pi \int_{0}^{4} (y - 4) dy$$

The first line is correct but the second contains errors. Write the correct second line. Do not continue the calculation.

Question 6 starts on the next page

Question 6 (12 marks) (Start a new booklet)

- a) The diagram shows the parabola $y = x^2 4x + 3$
 - Find the co-ordinates of A and B i)
 - Find the shaded area using integration. ii)

Question 6 continued

b) A parabola has its focus at (5,2) and its directrix is the line y=8.

i) Sketch the parabola giving the co-ordinates of its vertex.

2

1

2

1

- ii) What is the focal length of this parabola?
- iii) What is the equation of this parabola?
- iv) Write down the equation of another parabola with the same vertex and focal length.

Question 7 (12 marks)

(Start a new page)

- a) The tenth term of an arithmetic series is 93 and the fifteenth term is 68.
 - Find the first term a and common difference d.
- b) Find the sum of the first 20 terms of this series:
 - 8,15,22..... 2

3

2

3

- c) $2+\sqrt{3}$, x, $2-\sqrt{3}$ forms a geometric series
 - Find x
- d) For which values of k does a limiting sum exist for:

$$1 + (2k-1) + (2k-1)^2 + \dots$$
 2

e) A tree was planted at the beginning of the year 2000, when it was 70 cm tall. At the beginning of 2001 it was 92 cm tall and at the beginning of 2002 it was 114 cm tall.

Assuming it continues to grow at this rate, find its height at the beginning of 2010.

Question 8 (12 marks)

(Start a new page)

a) Prove that $\frac{1}{\sin\theta\cos\theta} - \tan\theta = \cot\theta$	2		
b) From Town A two straight roads run to Town B and Town C. The bearing of B from A is $200^{\circ}T$ and the bearing of C from A is $310^{\circ}T$. A is 40 km from B and 55 km from C.			
 i) Draw a diagram showing the relative positions of the towns. 	1))
 ii) Use trigonometry to calculate the distance BC to the nearest kilometre. 	3		
c) Evaluate $\sum_{h=0}^{6} 5h-1$	2		
d) For the curve $f(r) = 4r^3 - 6r^2 + 5$			

2

1

1

Question 9 starts on the next page

i) Find the stationary points on the curve and determine

their nature.

iii) Sketch the curve

ii) Locate the point of inflection.

Question 9 (12 marks)

(Start a new page)

a) Farmer Brown is building exercise pens for his ducks, chickens and geese. The pen is built against the barn wall and each kind of fowl has the same area of pen, as shown in the diagram. Farmer Brown has 60 m of fencing mesh.

BARN WALL

ducks	chickens	geese	x
y	у	у	

i) Show that the area A in m^2 he can enclose is given by

A = x(60 - 4x)

- ii) Find the maximum area he can enclose.
- b) The quadratic equation $2x^2 + 9x 12 = 0$ has roots α and β 3 Use the values of $\alpha + \beta$ and $\alpha\beta$ to find the value of $|\alpha - \beta|$

2

4

Question 9 continued

c) $\triangle AEB$ is an equilateral triangle and quadrilateral EBCD is a rhombus with $\angle EDC = 30^{\circ}$

i) Copy the diagram and mark in the size of all internal angles

ii) Hence find the size of ∠EDA

1

2

Question 10 starts on the next page

Question 10 (12 marks)

(Start a new page)

- a) ABCD is a quadrilateral with diagonals AC and BD intersecting at 90° at point E. AC bisects $\angle BCD$.
 - Draw a neat sketch to represent ABCD and mark in all given information.
 - Using congruent triangles, prove that $\triangle BCD$ is isosceles.

1

3

2

2

4

b) In the diagram below: $\angle ABC = \angle AED$

i) Prove ΔABC | ΔAED

ii) If AB = 12 cm, AE = 8 cm and AC=10 cm, find AD

c) A(2,0) and B(8,0) are points on the number plane. P is the point (x,y)

The locus of P is defined by AP = 2BP, so that the point P is always twice as far from A as it is from B.

Find the equation of the locus of P and describe the locus in words.

End of Paper

Y	ear 12 Mathematics Examination Solution	ons March 2007
Question	Method	Comments
1a)	J4.28+9.714 = 3.7 (1dp)	0
6)	$\sqrt{4.28 + 9.714} = 3.7 \text{ (1dp)}$ $\frac{2}{5} - \frac{2-1}{3} = \frac{3x - 5(x - 1)}{15}$	
	$= -\frac{2x+5}{15} \bigcirc$	
د)	$3x^{2}-9x-12=0$	
	$3(x^2-3x-4)=0$	
	3(x-4)(x+1)=0 0	
	: >c-4=0 or x+1=0	
	x=4000 x=-10	
d)	12 - 2x > 4 $-2x > -8 \oplus$ $x < 4 \oplus$	
	< 1 → 1 → 2< 1 3 ← 1 → 3 ←	
e)	$9x^{2}-16=(3x+4)(3x-4)$	
€)	y = (x+1) $y = (x+1)$ $y = (x+1)$	Ofer graph y=x+ -t no arrow heads -t no intercepts.

,

.

with the contract

Year 12 Mathematics Examination Solutions March 2007			
Question	Method .	Comments	
2 a)	Va = 575-53 = 553-53	ر اند أ	
	= 453 (5)	(40)	
	= 548 Q: a=48		
b)	$x^{2}-4x \leq 0$ $x(x-4) \leq 0$		
	0 1 4 x & 4		
c)	$\frac{x^{3}-8}{x^{2}-4} = \frac{(x-2)(x^{2}+2x+4)}{(x-2)(x+2)}$	D }	
	$=\frac{\chi^2+2\chi+4}{2\chi+2}\left(\frac{1}{2}\right)$	\oplus	
d)	$\frac{4}{x-3} - \frac{x-2}{x^2-x-6} = \frac{4(x+2)^2}{(x-3)(x+2)} = \frac{4(x+2)^2}{(x-3)} = \frac{4(x+2)^2}{(x-3)(x+2)} = \frac{4(x+2)^2}{(x-2)} = \frac{4(x+2)^2}{(x-2)} = \frac{4(x+2)^2}{(x-2)} = 4(x+$	-3)(x+2)()	
	= 3x + 10 (x-3)(x+2)	(D)	
e)	$\frac{\sin^3\theta}{\cos\theta} + \frac{\sin\theta\cos\theta}{\cos\theta}$ $= (1-\cos\theta) \cdot \sin\theta + \sin\theta\cos\theta$ $\cos\theta = 0$,	
	$= (1 - \cos \theta) \cdot \sin \theta + \sin \theta \cos \theta$		
	$= \frac{\sin \theta}{\cos \theta} - \sin \theta \cos \theta + \sin \theta \cos \theta$ $= \frac{\sin \theta}{\cos \theta} = \frac{\cos \theta}{\cos \theta} = \cos $	S &	
	ευs Θ		

Y	Year 12 Mathematics Examination Solutions March 2007			
Question	Method	Comments		
3a)) Through (6,0), with grad $\frac{4}{3}$ $y-0=\frac{4}{3}(x-6)$			
	$3y = 4x - 24$ ① $\therefore 4x - 3y - 24 = 0$			
	(i) $(5,0)$ $(5,0)$ $(5,0)$ $(5,0)$			
	11) $4x-3y-24=0$ 4x=0,-3y=24:y=-8 3x=0			
	(IV) $d = \left \frac{Az_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right $			
	$= \left \begin{array}{c c} 0 + 0 - 24 \\ \hline \sqrt{3^2 + 4^2} \end{array} \right \left(\begin{array}{c} 1 \\ 2 \end{array} \right)$			
	= 24 = 4.8 w(1) 3) j L k : m = -3 (1) + hrough	(0, 4)		
	$y-0 = -\frac{3}{4}(x-6)$ $4y = -3x + 18$ $3x + 4y - 18 = 0$			

3b) //

Y	Year 12 Mathematics Examination Solutions March 2007			
Question	Method	Comments		
39)	$ \begin{array}{c c} 1 & 3 \\ \hline -3 & 3 \\ \hline \end{array} $ $ \begin{array}{c} \text{domain:} \\ \text{domain:} \\ \text{range:} \\ \text{range:} \\ \text{so} \\ \end{array} $	marks gwen if correct domain/range for wrong graph		
Q4a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. Latarted		
b)	Area is $815m^2$ (1) 1) $\frac{d}{dx}(5x^{-4}) = -20x^{-5}$ (1)	for incorrect or units		
	(1) $\frac{d}{dx} \left(\frac{x^{5} - 3x^{2} + 4}{x^{4}} \right)$ $= \frac{d}{dx} \left(x^{2} - 3x^{2} + 4x^{-4} \right)$ $= 2x + 6x^{-3} - 16x^{-5} $	if done by apotent rule. 2x + 6x 5-16x 2x 15 be cause this exp. simplifies.		
	III) $\frac{d}{dx} \left((3x-2)^{\frac{1}{2}} \right) = \frac{1}{2} \left(3x-2 \right)^{\frac{1}{2}}$ $= \frac{3}{2} \left(3x-2 \right)^{\frac{1}{2}}$ $= \frac{3}{2} \left(3x-2 \right)^{\frac{1}{2}}$ $= \frac{3}{2} \left(3x-2 \right)^{\frac{1}{2}}$			

c)
$$y = 4x^2 - 6x$$
 eq: $y - 4 = 10(x - 2)$
 $y = 8x - 6$ 0 $y = 10x - 16$ g)

at $x = 2$, $y = 10$

... $m = 10$ 0

Year 12 Mathematics Examination Solutions March 2007			
Question Method		Comments	
Q5a 1) 5 (22+5)0	$lx = \left[\frac{1}{3}x^3 + 5x\right]^3$	Depart for reasonable attempt at raising power by I a dviding.	
3	$= 245\frac{1}{3}$ $= 29\frac{1}{3} \text{ or } 88$		
") \ (9x-5)	$rac{1}{q} - \frac{1}{4} \left(q_{22} - 5 \right)^{4}$		
	$= \frac{1}{36} \times 22^{4} - \frac{1}{36} \times 13$	4	
	$= 5713\frac{3}{4}$ ①		
(11) $\int_{4}^{9} x^{3/2} dx$	$= \begin{bmatrix} \frac{2}{5} \chi & \frac{5}{2} \end{bmatrix}_{4}^{7} \emptyset$		
	$=\frac{2}{5} \times 243 - \frac{2}{5} \times 32$		
b) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 - correct shape 5 - correct domainsrange 0 - sansible attempt 21 integral	
c) $V = \pi \int_{a}^{b} x^{\perp} dx$	My 4=4-26		
= 11 5 (4-4)) dy : x2=(4-y2)	(a) show $x = (4-y^2)^2$ (b) show $x^2 = (4-y)^2$ (c) correct bounds.	
or = TT 50 (16	-8y2+y9+)dy.		

Question	Method	Comments
Q6°1)	Solve simultaneously $y = x^{2} - 4x + 2 + y = 2x - 6$ $x^{2} - 4x + 2 = 2x - 6$ $x^{2} - 6x + 8 = 0$ $(x - 2)(x - 4) = 0$ $x = 2 \text{ or } x = 4$	solve simultaneous correct points (1).
	$= -5\frac{1}{3} - 6\frac{2}{3} = 1\frac{1}{3} / 2$ $= -5\frac{1}{3} - 6\frac{1}{3} = 1\frac{1}{3} - 6\frac{1}{3}$	separately giving $=(-8-8)-(-2^{2})$ $=(-8-8)-(-2^{2})$ $=(-8-8)-(-2^{2})$ correct subtraction correct supports to
	(11) $(x-5)^{2} = -12(y-5)^{2}$ (11) $(x-5)^{2} = 12(y-5)$ Or $(y-5)^{2} = 12(x-5)$ Or $(y-5)^{2} = -12(x-5)$	vertex () n) focal length () n) correct eq. () iv) correct eq ()

Y	ear 12 Mathematics Examination Solut	ions March 2007
Question	Method	Comments
Q7a	$T_{10} = 93$ $a + 9d = 93$	(1)
	T ₁₅ =68 a+ 14d=68	
	d. = -5	
	: a=45=93	
	a= 138 0	
	a=138, d=-5	
b)	400 2	
,	$S_{20} = \frac{20}{2} \left(16 + (9 \times 7) \right) $	
	= 1490 ①	
cj	$\frac{2}{2+\sqrt{3}} = \frac{2-\sqrt{3}}{2} 0$	
	$x^2 = 2^2 - 3$	
	$x^2 = 1 2 = \pm 1 0$	
d	(2k-1) < 1 0	
	-1 c 2k-1c1	
	0 c 2k c 2	
	0 < k < 1 (1)	
201	70 92, 114 Apwo	fh a = 70, d = 22
One I	$T_0 = 70 + 22$	
2002	$T_3 = 70 + 22 \times 2$	gwe @ fer Tic 268
2010	$T_{11} = 70 + 22 \times 10$ $= 290 \text{ cm} \cdot 3$	11 100

Year 12 Mathematics Examination Solutions March 2007		
Question	Method	Comments
Q8a)	Smo coso - tano	
	$= \frac{1}{\sin \theta \cos \theta} - \frac{\sin \theta}{\cos \theta} \bigcirc$	
	$= \frac{1 - \sin^2 \theta}{\sin \theta \cos \theta}$	
	$= \frac{\cos^2\theta}{\sin\theta\cos\theta} \bigcirc$	
	$= \frac{\cos \Theta}{\sin \Theta}$ $= \cot \Theta = RHS.$	
6 1	CAFEN	
b)	$d^{2} = c^{2} + b^{2} - 2cb \cos d$ $d^{2} = 40^{2} + 55^{2} - 2 \times 40$ $= 6129.9 \text{ (1)}$	A (1) 55 ws 110
	1/40 = 6129.9 D B d= 78.3 km	
	: distance = 78 km. (n	
c)	-1 + 4 + 9+29 (7 terms)	(t,4)
	$S_7^0 = \frac{7}{2}(-1+29) = 980$	(5 (1, 3)
d)	$f(x) = 4x^3 - 6x^2 + 5$	7-1
	f(x) = 12x2-12x D	
	f(x)=0 when x=0, x=1	

:. st pts at (0,5) and (1,3) (1)

f'(x) = 24x-12 at x=0 f'(x) = -12: \(\) max tp(

at x=1 f'(x) = 12: \(\) mun ty

Pt of unflex when f'(x) =0 :. x=\(\) (\(\) \(\) pt

Y	Year 12 Mathematics Examination Solutions March 2007		
Question	Method	Comments	
Q9 a)	3x + 4x = 60 $y = 60 - 4x$	Φ .	
	Area = $3y \times x$ = $3 \times 60 - 4x \cdot x$ = $x (60 - 4x)$ $A = 60x - 4x^{2}$ dA = 60 - 8x	(D)	
	$dx = 0$ $dx = 0$ $dx = 0$ $60 - 8x = 0$ $8x = 60$ $x = 7\frac{1}{2}$ $d^{2}A = -8 < 0$ $max area = 7\frac{1}{2}(60-30)$ $= 225 m^{2}$	O	

Year 12 Mathematics Examination Solutions March 2007			
Question	Method	Comments	
9b)	2x2+9x-12=0		
	$x+\beta = -\frac{9}{2}$ $x\beta = -\frac{12}{2} = -6$		
	now $(\alpha - \beta)^2 = x^2 - 2x\beta + \beta^2$		
	= 02 + 2×B+B+ -4	KB	
	= (x+B)2-4xB		
	$=(-9)^2-4\times^{-6}$		
	= 20 + 24		
٠	= 444		
	: (x - B) = V444		
	$=\sqrt{177}=\sqrt{177}$		
90)	B 30 150 30 000 000 000 000 000 000 000 000 00	\[\alpha \text{AED} = 360^\circ (60 + 150) \] \[= 150^\circ \text{Crevo at} \]	
	:. LEOA = ½ (180-150) = 15°		
		•	

Year 12 Mathematics Examination Solutions March 2007		
Question	Method	Comments
10 a)	draw a quae	general trilateral
or 1	IN DS CED, CEB LECD = LECB (gwenter) EC is common LDEC = LBEC (ACL LOCED = DCEB (ACL	DB) () + AS) () + correspondes esqual.) (es of cong. (SS)
(640)	LABO COMMON LABO = LAED (giver LACB = LADE (LSU	oiangviar) O
(I)	: AB = A & Corresp	sides of simple Δs) $D = \frac{10 \times 8}{12}$ $= 6\frac{2}{3} \text{ cm}.$

.

Year 12 Mathematics Examination Solutions March 2007		
Question	Method	Comments
100)	(2,0) (8,0) A B	
	$AB = 2PB$ $\sqrt{(x-2)^2+y^2} = 2\sqrt{(x-8)^2+y^2}$	O
	$x^2-4x+4+y^2=4(x^2-16x+64)$	ֈ-y- ^{υ)}
	$x^{2}-4x+4+4^{2}=4x^{2}-64x+256$	12 (7)
	$0 = 3x^{2} - 60x + 252 + 36$ $0 = x^{2} - 20x + 84 + y^{2}$	
	$-84 = x^2 - 20x + y^2$	
	$-84+100 = x^{2}-20x+100+y^{2}$ $16 = (x-10)^{2}+y^{2}$	
4	ocus of P is $(x-10)^2 + y^2$ which is a circle, centre (10,0) radius 4	= 4
	centre (10,0) radius 4	U
	•	