Student Number:

St. Catherine's School Waverley

2010

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 3 - 15% 11thMay

Mathematics

General Instructions

- Working time 55 minutes
- Start each question on a new page in your answer booklet.
- If any additional booklet is used, please label it clearly and attach it to the appropriate booklet.
- Write using black or blue pen only.
 Board-approved calculators may be used.
- All necessary working must be shown.
- Marks may be deducted for careless or badly arranged work.

Q1	1	·/12
Q2		_/13
Q3		/6
Q4		/8
TOTAL		/39

- Attempt Questions 1-4
- · Questions are not of equal value

Question 1 (12 Marks)

Marks

5

Find the following indefinite integrals:

i.
$$\int (x-e^{3x}) dx$$

ii.
$$\int \frac{x^2 - 4}{x^2} dx$$

Evaluate the following definite integral:

$$\int_{0}^{1} (e^{x} + e^{-x})^{2} dx$$

i. Complete this table for the function $y = e^{i\pi x}$ giving answers to 2 decimal places

0.3 f(x)

- ii. Use these values and Simpson's rule to estimate $\int e^{(xx)} dx$ to 2 decimal places
- iii. Use calculus to evaluate correct to 2 decimal places $\int e^{(r\alpha)} dx$

Question 2 (13 Marks) Start a new page

Marks

a. Differentiate the following functions with respect to x:

i.
$$y = \frac{1}{4e^{4x}}$$

ii.
$$v = (e^{2x} + 1)^{-2}$$

b. Find the equation of the normal to the curve
$$y = e^{2x} + x$$
 when $x = 0$

c. Find the equation of a curve which passes through the point (0,4) if the gradient function of the curve is given by $\frac{dy}{dx} = e^{2x} + x - 1$

d. i. Differentiate
$$y = xe^x$$

ii. Hence find
$$\int_0^1 xe^x dx$$

Question 3 (6 Marks) Start a new page

Marks

a. These graphs represent the functions $y = x^2$ and $y = 2 - x^2$ which meet at (1,1) and (-1,1)

Find to two decimal places the area between the two curves

3

b. Find the x value of the stationary point on the curve
$$y = \frac{e^{-x}}{x}$$

3

Question 4 (8 Marks) Start a new page

Marks

a.

This graph represents the function $y = e^{\frac{x}{2}}$

Find the exact volume of the solid formed if the area under the curve and above the x axis between x=0 and x=2 is rotated about the x axis through 360°

b.

This graph represents the curve $y = 16 - x^2$. The area between the curve and the x and y axes in the first quadrant is rotated through 360° about the y axis. Find the **exact** volume of the solid formed.

End Of Test

Qn		
Solutions $\int (x - e^{3x}) dx = \frac{x^2}{2} - \frac{3x}{2} + c$	Marks	
$\int \int (x-e^{3x}) dx = x^2 = 3\pi$	ATAI AS	Comments+Criteria
11 2 = 12 + 6	121	
	1~1	
$\int_{0}^{\infty} \int_{0}^{\infty} \left(-\frac{1}{2} \right)^{3} dx$	-	
": $\int \frac{x^2 - 4}{3c^2} dx = \int (1 - 4x^{-2}) dx$		
1 i	1 ' 1'	•
= 3c + 4/3c + c	1,1	
b 2		
(e+e) du = (12x -2x)		
$\int_{0}^{\infty} \left(\frac{x}{e} + e^{-x} \right)^{2} dx = \int_{0}^{\infty} \left(\frac{2x}{e} + 2 + e^{-2x} \right) dx$	1 1	
•		
$= \left(\frac{2x}{2} + 2x - \frac{-2x}{2}\right)^{1}$. ,	•
	'	•
$= \left(\frac{e^{2}}{2} + 2 - \frac{1}{2e^{2}}\right) - \left(\frac{1}{2} + 0 - \frac{1}{2}\right)$		
2 202) - (2+0-1)		
= e ²		
$=\frac{2^{2}}{2}+2-\frac{1}{2e^{2}}$	1	
		1
c. 1. × 0.1		
0.3		
f(sc) 1.37 1.87 2.57	1	
$ A = \frac{0.1}{3} \left[1.37 + 4 \times 1.87 + 2.57 \right] $		
3 [23/1] 2		
= 0.38 (2d.p.)		·
(2 02. p.)		
0.3		·
$\int_{0.1}^{N_1} e^{(\pi x)} dx = \frac{1}{\pi} \left[e^{\pi x} \right]_{0.1}^{0.3}$		
or at = The		
$=\frac{1}{\pi}\left[e^{-3\pi}-i\pi\right]$		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
= 0.38 (2d.p.) 2	1	.
0.38 (2d.p.) 2	1	
	1	į
	1	1

	Solutions	
	$\frac{4x}{2} = \frac{3}{4x} $ Marks Com	
	$y = \frac{e^{-4x}}{4}$ Marks Com	ments+Criteria
-		
_	-4x	
	$\frac{1}{dx} = -4e \qquad -4x$	
	$\frac{dy}{dx} = \frac{-4x}{1} = -4x$ $\frac{-4x}{1} = -4x$ $\frac{-4x}{1} = -4x$	
	e \~ \.	
	$y = \begin{pmatrix} 2x & -2 \\ e & +1 \end{pmatrix}$	
	$\frac{dy}{dx} = -2 \left[\frac{2\pi}{e+1} \right]^{-3} \times 2e$	
	ohe = "Left] x le	
	Σχ.	
	= -4.e ×	·
ŀ	$(2x)^3$.
	(2 +1)	
	J=e+x then du 2x	
	$ \int_{0}^{2\pi} e^{2x} + x \text{then } dy = 2e + 1 $	
	$f'(0) = 2e^{x} + 1 = 3$	
1	giving gradient normal = - 1	-
	3	
	Now when x=0 y= e+0=1	
	$y - 1 = -\frac{1}{3}(x - 0)$	
	$\Rightarrow x + 3y - 3 = 0$	
	c. If $\frac{dy}{dx} = \frac{2x}{x-1}$	
•		
	then $y = \frac{e^{2x}}{2} + \frac{x^2}{2} - x + c$	
	$\int \frac{1}{2} \frac{1}{2} - x + c$	
	when: x = 0, y= 4	
	$\therefore 4 = \frac{e}{2} + 0 - 0 + c$	
	\frac{1}{2} +0-0+c	
	$=$ $C = 3\frac{1}{2}$	
	Hence	
	Traffic is	
	Hence repraction is $J = \frac{e^{2x}}{2} + \frac{x^2}{2} - x + \frac{7}{2}$	
	$\int \frac{1}{2} + \frac{1}{2} - x + \frac{7}{2}$ 3	
	•	

Solutions				
2" ') y=xex		Marks	Comments+	Criteria
2 ") y = x e x using product rule	İ			
using product rule				
dy n x	. 1			
$\frac{dy}{dx} = x \cdot e^{x} + e^{x}$	1	,		
	.	' '		
") Now $\int x e^{x} dx = \int (x-x)^{-1}$	x x1 (x)			
) see de = /(x-	2 + 2) - p dn			
	1	1	•	
=[x ex-	2×7'			
	2]	1		.
= (e'_0)-(0-2)			.
(-2	7-(0-2)	- 1		
= 1.		2	•	
				1.
·				
	1			
1				
-		1		
	1			
		1		
•				1.
	ľ			
•				
			•	
			•	1
		1		
· .				
		1		
	1	1		
	1			1

1 1	Solutions	Marks		
3	Area = $2\int_{0}^{\pi} (2-xc^{2})-x^{2} dx$	17AULAS	Comments+C	riteria
	$= 2 \int_{0}^{1} (2-2x^{2}) dx$			
	$= 2 \left[2x - \frac{2x^3}{3} \right]^{\frac{1}{3}}$		·	
	$= 2\left(\left(2-\frac{2}{3}\right)-6\right)$			·
	$= 2 \times \frac{4}{3} = \frac{8}{3} = 2.670^{2}$	- 3		
D.	$y = \frac{-x}{sc}$			
ı	Stationary when $\frac{dy}{dx} = 0$			
	Using quotient rule $\frac{dy}{dx} = \frac{x \times -e^{-x} - e^{-x}}{x^2}$			i
	$= -e^{-x} \left[x + i \right]$			
	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $e^{-3k} \neq 0 \therefore x+1=0$			
	$\Rightarrow x=1$	3		

On Solutions Wolcome = $\pi \int_{0}^{2} (e^{\frac{x}{2}})^{2} dx$ = $\pi \int_{0}^{2} e^{\frac{x}{2}} dx$ = $\pi \int_{0}^{2} e^{\pi} \int_{0}^{2} e^$	
a. Volume = π $\int_{0}^{2} (e^{\frac{x}{2}})^{2} dx$ = π $\int_{0}^{2} e^{\frac{x}{2}} dx$ = π $\int_{0}^{2} e^{\frac{x}{2}} dx$ $\int_{0}^{2} e^{\frac{x}{2}} dx$ $\int_{0}^{2} e^{\frac{x}{2}} dx$ $\int_{0}^{2} e^{\frac{x}{2}} dx$ $\int_{0}^{2} e^{-1} dx$ $\int_{0}^{2} e^{-1} dx$ $\int_{0}^{2} e^{-1} dx$ $\int_{0}^{2} e^{-1} dx$	
Volume = $\pi \int_{0}^{2} \left(e^{\frac{x}{2}}\right)^{2} dx$ = $\pi \int_{0}^{2} e^{x} dx$ = $\pi \int_{0}^{2} e^{x} dx$ $y = 16 - x^{2} = x^{2} = 16 - y$ $y = \pi \int_{0}^{2} (16 - y) dy$	
$= \pi \int_{0}^{2} e^{x} dx$ $= \pi \int_{0}^{2} e^{x} \int_{0}^{2} = \pi \int_{0}^{2} e^{-1} \int_{0}^{3} 4$ $y = 16 - 3x^{2} = x^{2} = 16 - y$ $V = \pi \int_{0}^{3} (16 - y) dy$	
$= \pi \int_{0}^{2} e^{x} dx$ $= \pi \int_{0}^{2} e^{x} \int_{0}^{2} = \pi \int_{0}^{2} e^{-1} \int_{0}^{3} 4$ $y = 16 - 3x^{2} = x^{2} = 16 - y$ $V = \pi \int_{0}^{3} (16 - y) dy$	
$= \pi \int_{0}^{2} e^{x} dx$ $= \pi \int_{0}^{2} e^{x} \int_{0}^{2} = \pi \int_{0}^{2} e^{-1} \int_{0}^{3} 4$ $y = 16 - 3x^{2} = x^{2} = 16 - y$ $V = \pi \int_{0}^{3} (16 - y) dy$	
$F = \pi \int_{0}^{2} e^{2\pi i \int_{0}^{2} e^{-1} dy} dy$ $F = \pi \int_{0}^{2} (16-y) dy$ $F = \pi \int_{0}^{2} (16-y) dy$	
$F = \pi \int_{0}^{2} e^{2\pi i \int_{0}^{2} e^{-1} dy} dy$ $F = \pi \int_{0}^{2} (16-y) dy$ $F = \pi \int_{0}^{2} (16-y) dy$	
4. $y = 16 - 3c^2 = 3 \times = 16 - 9$ $V = \pi \int_{0}^{16} (16 - y) dy$	
4. $y = 16 - 3c^2 = 3 \times = 16 - 9$ $V = \pi \int_{0}^{16} (16 - y) dy$	
4. $y = 16 - 3c^2 = 3 \times = 16 - 9$ $V = \pi \int_{0}^{16} (16 - y) dy$	
4. $y = 16 - 3x^2 = 3 \times x^2 = 16 - y$ $V = \pi \int_{0}^{16} (16 - y) dy$	
$V = \pi \int_{0}^{\pi} (16-y) dy$	
$V = \pi \int_{0}^{\pi} (16-y) dy$	
$V = \pi \int_{0}^{\pi} (16-y) dy$	
$V = \pi \int_{0}^{\pi} (16-y) dy$	
$V = \pi \int_{0}^{\pi} (16-y) dy$	
$V = \pi \int_{0}^{\pi} (16-y) dy$	
$=\pi\left[16y-\frac{y}{2}\right]^{\frac{1}{2}}$	
= T (25(-126) 7	
$=\pi\left[\left(256-128\right)-0\right]$	
= 12817 U3	
- 128/1 0	