- INDEPENDENT SCHOOLS -

2006 Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- · Write using black or blue pen
- Board approved calculators may be used
- · Write using black or blue pen
- Write your student number and/or name at the top of every page
- All necessary working should be shown in every question
- A table of standard integrals is provided separately

Total marks - 84

Attempt Questions 1-7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME.

Student name / number

Marks

Question 1

Begin a new page

When the polynomial $P(x) = x^3 + ax + 1$ is divided by (x + 2) the remainder is 3. Find the value of a.

(b) The acute angle between the lines y = (m+2)x and y = mx is 45°.

i) Show that $\frac{2}{m^2 + 2m + 1} = 1$.

(ii) Hence find any values of m.

2

1

(c)(i) Show that $\cot \theta - \cot 2\theta = \csc 2\theta$.

2

(ii) Hence find the exact value of cot15°.

. 1

(d)

ABC is a triangle inscribed in a circle. MAN is the tangent at A to the circle ABC. CD and BE are altitudes of the triangle.

(i) Copy the diagram.

(ii) Give a reason why BCED is a cyclic quadrilateral.

1

(iii) Hence show that DE is parallel to MAN.

3

Student name / number

Marks

2

1

1 2

1

3

Question 2

Begin a new page

- (a) A(-3,4) and B(1,2) are two points. Find the coordinates of the point P(x,y) which divides the interval AB externally in the ratio 3:1.
- (b)(i) Solve the inequality $\frac{1}{1-x} < 1$.
 - (ii) Hence find the set of values of x for which the limiting sum S of the geometric series $1+x+x^2+x^3+...$ is such that S<1.

Three points A, B and C lie on horizontal ground. Points A and B are 30 metres apart and $\angle ACB = 120^{\circ}$. A vertical flagpole CD of height h metres stands at C. From each of A and B the angle of elevation of the top D of the flagpole is 30° .

- (i) Show that $AC = BC = h\sqrt{3}$.
- (ii) Hence find the value of h.

(d)

- (i) Find the coordinates of the point T on the parabola $x^2 = 4ay$ such that the tangent to the parabola at T is parallel to the line y = x.
- (ii) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points that move on the parabola $x^2 = 4ay$ such that the chord PQ is always parallel to the line y = x. M is the midpoint of PQ. Find the equation of the locus of M and state any restrictions on this locus.

Student name / number

Marks

2

2

2

2

1

3

Question 3

Begin a new page

- (a) Consider the function $f(x) = \frac{x-2}{x-1}$.
 - i) Show that the function is increasing for all values of x in its domain.
 - (ii) Sketch the graph of the function showing clearly any intercepts on the coordinate axes and the equations of any asymptotes.
 - (iii) Find the equation of the inverse function $f^{-1}(x)$. Deduce that the graph of the function f(x) is symmetrical about the line y = x.

- (b) Consider the function $y = \frac{1}{2}\cos^{-1}(x-1)$.
 - (i) Find the domain and range of the function.
 - (ii) Sketch the graph of the function showing clearly the coordinates of the endpoints.
 - (iii) The region in the first quadrant bounded by the curve $y = \frac{1}{2}\cos^{-1}(x-1)$ and the coordinate axes is rotated through 360° about the y axis. Find the volume of the solid of revolution, giving your answer in simplest exact form.

Marks

2

2

2

2

Onestion 4 Begin a new page

Q 2 00 0		men bage		
(a)(i)	Show that the equation $x^3 + 2x - 7 = 0$	has a root α such that	$1 < \alpha < 2$.	2

- (ii) If an initial approximation of 1.5 is taken for α , use one application of Newton's method to find the next approximation, rounding your answer to one decimal place.
- (b) Use the substitution $x = u^2$, $u \ge 0$, to find the value of $\int_1^3 \frac{1}{(x+1)\sqrt{x}} dx$.

 Give your answer in simplest exact form.
- (c) Five different fair dice are thrown together. Find the probability that
 - (i) the five scores are all different
 - (ii) the five scores include at most one 6

Question 5

Begin a new page

(a)

2

2

P is a point on the circle $x^2 + y^2 = 1$ such that the radius OP makes an angle θ with the positive x axis, where $0 < \theta < \frac{\pi}{2}$. The tangent to the circle at P cuts the x axis at T.

- (i) Show that the area A of the shaded region is given by $A = \frac{1}{2} (\tan \theta \theta)$.
- (ii) If θ is increasing at a constant rate of 0.1 radians per second find the rate at which A is increasing when $\theta = 1$, giving your answer correct to 2 decimal places.
- (b) The number N of individuals in a population at time t years is given by $N = 100 60e^{-0.1t}$.
 - (i) Sketch the graph of N as a function of t showing clearly the initial population size and the limiting population size.
 - (ii) Find the exact time taken for the population to double its initial size and find the rate at which the population is increasing then.
- (c) Use Mathematical Induction to show that, for all positive integers $n \ge 1$, $1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$.

2

3

	Student name / number	
		Marks
Quest	ion 6 Begin a new page	
(a)	A particle is moving in a straight line with Simple Harmonic Motion. At time t seconds it has displacement x metres from a fixed point 0 on the line, given by $x = 1 + 3\cos\frac{t}{2}$, velocity v ms ⁻¹ and acceleration a ms ⁻² .	
(i)	Show that $a = -\frac{1}{4}(x-1)$.	1
(ii)	Find the distance travelled and the time taken by the particle over one complete oscillation of its motion.	2
(iii) Find the time taken by the particle to travel the first 100 metres of its motion, giving your answer in seconds correct to two decimal places.	3
(b)	A golfer hits a golf ball from a point O with speed 40 ms^{-1} at an angle θ above the horizontal. The ball travels in a vertical plane where the acceleration due to gravity is 10 ms^{-2} .	
(i)	Write down expressions for the horizontal displacement x metres, and the vertical displacement y metres, of the golf ball from O after time t seconds.	1

		Marks
Quest	ion 7 Begin a new page	
(a)	A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity v ms ⁻¹ , given by $v = (k - x)^2$ for some constant $k > 0$, and acceleration a ms ⁻² . Initially the particle is at O .	
(i)	Show that $x = \frac{k^2t}{kt+1}$. Hence show that $x < k$ for all values of t .	4
(ii)	Express a in terms of x . Deduce that the particle is always moving to the right and always slowing down.	2
(ii	i) Find the distance travelled and the time taken by the particle for its speed to drop to 1% of its initial value.	2
(b)(i)	Show that ${}^{n+1}C_r - {}^nC_r = {}^nC_{r-1}$, $r = 1, 2, 3,, n$.	2
(ii	Hence find the value of $\sum_{n=3}^{100} {}^{n}C_{2}$.	2

(iii) The golfer is aiming over horizontal ground at a circular pond of radius 10 metres with centre 110 metres from O. Find the set of possible values of θ for the golf ball to land directly in the pond, giving your answers correct to the nearest degree.

Mathematics Extension 1 Independent Trial HSC 2006

Marking Guidelines

Ouestion 1

a. Outcomes assessed: PE3

Marking Guidelines		
Criteria	Marks	
• uses the remainder theorem to write an equation for a	1	
• finds the value of a	1	

Answer

$$P(x) = x^3 + \alpha x + 1$$

$$P(x) = x^3 + \alpha x + 1 \qquad \therefore P(-2) = 3 \implies -8 - 2\alpha + 1 = 3 \qquad \therefore \alpha = -5$$

$$\therefore a = -5$$

b. Outcomes assessed: P4, H5

Criteria	Marks
i • uses the formula for the angle between two lines to obtain the required equation for m	1
ii • reduces this equation to a quadratic in m	1
• solves this quadratic to find two values of m	1

Answer

i.
$$\left| \frac{(m+2)-m}{1+m(m+2)} \right| = \tan 45^{\circ}$$
$$\left| \frac{2}{m^2+2m+1} \right| = 1$$

ii.
$$\left| \frac{2}{\left(m+1 \right)^2} \right| = 1$$

$$\therefore m+1=\pm\sqrt{2}$$

$$m=-1\pm\sqrt{2}$$

c. Outcomes assessed: H5

Marking Cuidelines

Marking Guidenes		
Criteria	Marks	
i • expresses $\cot 2\theta$ in terms of t where $t = \tan \theta$. 1	
\bullet simplifies LHS in terms of t and recognizes expression for cosec 2θ	1	
ii • applies identity to evaluate cof15°	1 .	

Answer

i. Let
$$t = \tan \theta$$
. Then
$$\cot \theta - \cot 2\theta = \frac{1}{t} - \frac{1 - t^2}{2t}$$

$$= \frac{2 - (1 - t^2)}{2t}$$

 $= \csc 2\theta$

ii.
$$\cot 15^{\circ} - \cot 30^{\circ} = \csc 30^{\circ}$$

 $\cot 15^{\circ} - \sqrt{3} = 2$
 $\cot 15^{\circ} = 2 + \sqrt{3}$

d. Outcomes assessed: PE2, PE3

Marking Guidelines	
Criteria	Marks
ii • quotes appropriate test for a cyclic quadrilateral	1
iii • uses equality of exterior and interior opposite angles of BCED with explanation	1
applies alternate segment theorem with explanation	1
• quotes an appropriate test for parallel lines	1

Answer

- ii. Interval BC subtends equal angles BDC and BEC at points D, E on the same side of BC. Hence BCED is a cyclic quadrilateral.
- iii. $\angle ADE = \angle ACB$ (exterior \angle of cyclic quad. BCED is equal to interior opp. ∠)
- But $\angle MAB = \angle ACB$ (\angle between tangent and chord AB is equal to Lsubtended by AB in the alternate segment)
- Hence $\angle MAB = \angle ADE$
 - : DE || MAN (equal alternate \(Ls \) on transversal \(AB \)

Question 2

a. Outcomes assessed: P4

Marking Guidelines	,	
Criteria Criteria	Marks	
• finds x coordinate	1	
• finds v coordinate	1	

Answer

 $\therefore P(3,1)$ is the required point of external division.

b. Outcomes assessed: H5, PE3

Marking Guidelines

ſ	Criteria	Marks
Ì	i • applies a method which deals appropriately with the inequality and variable denominator	1
	• finds possible values of x	1
	ii • uses condition for existence of limiting sum along with result from i. to find x values.	1

Answer

$$\frac{1}{1-x} < 1$$

$$1-x < (1-x)^{2}, x \neq 1$$

$$0 < (1-x)^{2} - (1-x)$$

$$0 < (1-x)\{(1-x) - 1\}$$

ii.
$$1 + x + x^2 + ...$$
 has limiting sum
$$S = \frac{1}{1 - x} \text{ provided } |x| < 1.$$

Hence S < 1 for -1 < x < 0.

c. Outcomes assessed: H5

Marking Guidelines

Marking Guidennes	
Criteria	Marks
i • uses right triangle trigonometry to show result	1
ii • uses cosine rule to write equation for h	1
• finds value of h	1

Answer

i.
$$AC = BC = h \cot 30^\circ = h\sqrt{3}$$

ii. Using the cosine rule in
$$\triangle ABC$$
,
 $30^2 = 3h^2 + 3h^2 - 6h^2 \cos 120^\circ$
 $900 = 6h^2 \left(1 + \frac{1}{2}\right)$
 $h^2 = 100$
 $h = 10$

d. Outcomes assessed: H5, PE3, PE4

Marking Guidelines

Marking Oddernes	
Criteria	Marks
i • uses derivative to write equation for x at T then writes coordinates of T.	1
ii • uses gradient of PQ to show sum of p and q is 2	1
• writes coordinates of M in terms of p , q then deduces equation of locus	1
• states restriction $y > a$	1

Answer

i.
$$x^2 = 4ay$$

$$\frac{dy}{dx} = \frac{x}{2a}$$

$$\frac{dy}{dx} = 1 \Rightarrow x = 2a$$

$$\frac{dy}{dx} = 1 \Rightarrow x = 2a$$

ii.
$$PQ$$
 has gradient $\frac{a(p^2 - q^2)}{2a(p-q)} = \frac{p+q}{2}$

Hence
$$p+q=2$$

$$M\left(a(p+q), \frac{a}{2}(p^2+q^2)\right)$$

Hence locus of M has equation x = 2a.

M lies above T - y > a.

Question 3

a. Outcomes assessed: P5, H6, HE4

Marking Guidelines	
Criteria	Marks
i • differentiates the function	1.
• notes that the derivative is positive throughout the domain	1
ii • sketches hyperbola with correct intercepts on the coordinate axes	1
shows equations of both asymptotes	1
iii • finds the equation of the inverse function	1
• uses reflection property of graphs of inverse functions to justify required deduction	1

Answer

 $f'(x) = \frac{1 \cdot (x-1) - (x-2)}{(x-1)^2}$ $= \frac{1}{(x-1)^2}$

$$f(x) = \frac{x-2}{x-1}$$
 has domain $x = 1$.

f'(x) > 0 and function is increasing throughout its domain.

The graph of $f^{-1}(x)$ is the reflection of the graph of f(x) in the line y = x. But the two graphs are identical. Hence the graph of f(x) must be symmetrical in the line y = x.

b. Outcomes assessed: H8, HE4

Marking Guidelines

Criteria	Marks
i * states domain of function	1 1
• states range of function	1
ii • sketches graph of correct shape showing coordinates of endpoints	1
iii • writes volume as integral in terms of y	1
finds primitive after using appropriate trig. identity	1
• evaluates by substitution of limits	1

Answer

i.
$$y = \frac{1}{2}\cos^{-1}(x-1)$$

 $-1 \le x - 1 \le 1$
Domain $\{x : 0 \le x \le 2\}$
 $0 \le \cos^{-1}(x-1) \le \pi$
Range $\{y : 0 \le y \le \frac{\pi}{2}\}$

iii.
$$x = 1 + \cos 2y$$

$$V = \pi \int_0^{\frac{\pi}{2}} (1 + \cos 2y)^2 dy$$

$$= \pi \int_0^{\frac{\pi}{2}} (1 + 2\cos 2y + \cos^2 2y) dy$$

$$= \pi \int_0^{\frac{\pi}{2}} (1 + 2\cos 2y + \frac{1}{2}(1 + \cos 4y)) dy$$

$$= \pi \left[\frac{3}{2} y + \sin 2y + \frac{1}{8} \sin 4y \right]_0^{\frac{\pi}{2}}$$

$$= \pi \left\{ \frac{3}{2} \left(\frac{\pi}{2} - 0 \right) + \left(\sin \pi - \sin 0 \right) + \frac{1}{8} \left(\sin 2\pi - \sin 0 \right) \right\}$$

$$= \frac{3}{4} \pi^2$$

Question 4

a. Outcomes assessed: PE3

Marks
1
1
1
1
_

Answer

i. Let $f(x) = x^3 + 2x - 7$	ii. $f'(x) = 3x^2 + 2$
Then f is continuous with $f(1) = -4 < 0$ and $f(2) = 5 > 0$	$\alpha_1 = 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.5 - \frac{3.375 + 3 - 7}{6.75 + 2}$
Hence $f(\alpha) = 0$ for some $1 < \alpha < 2$.	$\therefore \alpha_1 \approx 1.6$

b. Outcomes assessed: HE6

Marking Guidelines		
Criteria	Marks	
• converts dx into du and simplifies new integrand	1	
• finds u limits	. 1	
• finds primitive function in terms of u	1	
• substitutes limits and evaluates in simplest exact form	1	

Answer

$$x = u^{2}, u \ge 0$$

$$dx = 2u \ du$$

$$I = \int_{1}^{3} \frac{1}{(x+1)\sqrt{x}} \ dx$$

$$I = 2\left[\tan^{-1} u\right]_{1}^{\sqrt{3}}$$

$$= 2\left(\tan^{-1} \sqrt{3} - \tan^{-1} 1\right)$$

$$= \int_{1}^{\sqrt{3}} \frac{1}{(u^{2}+1)u} \ 2u \ du$$

$$= 2\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= 2\int_{1}^{\sqrt{3}} \frac{1}{(u^{2}+1)} \ du$$

c. Outcomes assessed: HE3

Marking Guidelines

Tital King Guidelines	
Criteria	Marks
i • counts the number of arrangements of five different scores	1
 selects appropriate denominator and simplifies 	1 1
ii • writes numerical expression for the sum of probabilities of no 6 and exactly one 6	1
• calculates this probability	1

i.
$$P(all\ different) = \frac{{}^{\circ}C_{3} \times 5!}{6^{5}} = \frac{5}{54}$$

i.
$$P(all\ different) = \frac{{}^6C_5 \times 5!}{6^5} = \frac{5}{54}$$
 ii. $P(at\ mast\ one\ 6) = {}^5C_0(\frac{1}{6})^0(\frac{5}{6})^5 + {}^5C_1(\frac{1}{6})^1(\frac{5}{6})^4 = 2(\frac{5}{6})^5 = 0.804$

Question 5

a. Outcomes assessed: H4, H5, HE5

Marking Guidelines Marks Criteria i • shows $PT = \tan \theta$ 1 1 • uses difference between area triangle and area of sector to obtain expression for A ii • expresses $\frac{dA}{dt}$ in terms of $\frac{d\theta}{dt}$ • evaluates to find rate of increase of A when $\theta = 1$

Answer

i.
$$\angle OPT = 90^{\circ}$$
(tangent \perp radius drawn
to point of contact)
$$\therefore PT = \tan \theta$$

$$A = \frac{1}{2} OP \cdot PT - \frac{1}{2} \cdot 1^{2} \cdot \theta$$

$$= \frac{1}{2} (\tan \theta - \theta)$$

ii.
$$\frac{dA}{dt} = \frac{1}{2} \left(\sec^2 \theta \frac{d\theta}{dt} - \frac{d\theta}{dt} \right)$$
$$= \frac{1}{2} \left(\sec^2 \theta - 1 \right) \frac{d\theta}{dt}$$
$$= \frac{1}{2} \tan^2 \theta \times 0.1$$

Hence when $\theta = 1$, A is increasing at a rate 0.12 sq. units per second.

b. Outcomes assessed: HE3

Marking Guidelines

Transcare Control		
Criteria Criteria	Marks	١
i • sketches graph of correct shape showing initial population size	1	
 shows limiting size as horizontal asymptote 	1	ļ
ii • solves exponential equation for t to find exact time for initial size to double	1	
differentiates then finds rate of increase.	1	

Answer

ii.
$$t = 0 \implies N = 100 - 60e^{0} = 40$$

$$N = 80 \implies 60e^{-0.1t} = 20$$

$$e^{-0.1t} = \frac{1}{3}$$

$$-0.1t = \ln \frac{1}{3} + (-0.1)$$

Population doubles initial size in 10 ln 3 years

 $\frac{dN}{dt} = 0.1 \times 60e^{-0.1t} = \frac{1}{10} (100 - N)$

Population is then increasing at a rate of 2 individuals per year.

c. Outcomes assessed: HE2

Marking Guidelines

marking Guidelines		
Criteria	Marks	
• defines a sequence of statements and shows the first is true	1	
• expresses the LHS of $S(k+1)$ in terms of the RHS of $S(k)$ (if true)	1	
• rearranges algebraically to give RHS of $S(k+1)$	1	
writes final explanation to complete process of induction		

Answer

Let S(n) be the sequence of statements $1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$, n = 1, 2, 3, ...Consider S(1): LHS = $1^2 = 1$ and $RHS = \frac{1}{3} \cdot 1 \cdot (2-1)(2+1) = 1$. Hence S(1) is true

If S(k) is true: $1^2 + 3^2 + 5^2 + ... + (2k-1)^2 = \frac{1}{3}k(2k-1)(2k+1)$ **

Consider S(k+1): LHS = $\left\{1^2 + 3^2 + 5^2 + ... + (2k-1)^2\right\} + (2k+1)^2$ = $\frac{1}{3}k(2k-1)(2k+1) + (2k+1)^2$ if S(k) is true, using **

= $\frac{1}{3}(2k+1)\left\{k(2k-1) + 3(2k+1)\right\}$ = $\frac{1}{3}(2k+1)\left\{k(2k-1) + 3(2k+1)\right\}$ = $\frac{1}{3}(2k+1)\left\{k(2k+1) - 1\right\}\left\{2(k+1) + 1\right\}$ = RHS

Hence if S(k) is true, then S(k+1) is true. But S(1) is true, hence S(2) is true, and then S(3) is true and so on. Therefore S(n) is true for all positive integers $n \ge 1$.

Question 6

a. Outcomes assessed: HE3

Marking Guidelines		
Criteria	Marks	
i • finds expression for a by differentiation (or by noting centre of oscillation and value of n)	1	
ii • uses amplitude to find distance	1	
• uses period to find time	i i	
iii • finds number of complete oscillations and corresponding time	1 1	
• recognizes time taken for extra 4 m is time to first reach O and writes equation for t	1 1	
 adds time for the extra 4m to time for 8 complete oscillations and calculates total time 	1	

Answer

i. $x = 1 + 3\cos\frac{t}{2}$	ii. Amplitude is 3m and period is 4π s.
4-	Hence distance travelled is 12m and time taken is 4π s.
$\nu = -\frac{3}{2}\sin\frac{t}{2}$	iii. Initially particle is at its far right extreme where $x = 4$.
$\alpha = -\frac{3}{4}\cos\frac{t}{2}$	Also $100 = 8 \times 12 + 4$. Hence time taken for 100m is time for 8 complete
$\therefore a = -\frac{1}{4}(x-1)$	oscillations plus the time taken to travel directly from $x = 4$ to $x = 0$.
$a = -\frac{1}{4}(x - 1)$	$x = 0 \Rightarrow \cos \frac{t}{2} = -\frac{1}{3}$. First such t is $2(\pi - \cos^{-1} \frac{1}{3})$ seconds.
	Hence time taken to travel 100m is $8 \times 4\pi + 2(\pi - \cos^{-1}\frac{1}{3}) \approx 104.35$ s.

b. Outcomes assessed: H4, HE3

Marking Guidelines	
Criteria Criteria	Marks
i • writes expressions for x and y	1
ii • finds $t > 0$ for which $y = 0$	1
• substitutes this value of t into expression for x to find R	
iii • writes inequality for R	1
ullet finds one interval for $ heta$	
$m{\cdot}$ finds second interval for $m{ heta}$	1

Answer

i. $x = 40 t \cos \theta$	ii. $y = 5t(8\sin\theta - t)$	$iii. 100 \le R \le 120$
$y = 40 t \sin \theta - 5t^2$	$v = 0 \Rightarrow t = 0, 8 \sin \theta$	$\frac{10}{16} \le \sin 2\theta \le \frac{12}{16}$
,	Particle returns to ground level when	$38 \cdot 68^{\circ} \le 2\theta \le 48 \cdot 59^{\circ}$
	$x = 40 \left(8 \sin \theta \right) \cos \theta$	or $131.41^{\circ} \le 2\theta \le 141.32$
	$=160(2\sin\theta\cos\theta)$	$\therefore 20^{\circ} \le \theta \le 24^{\circ}$
	$\therefore R = 160\sin 2\theta$	or $66^{\circ} \le \theta \le 70^{\circ}$

Onestion 7

a. Outcomes assessed: HE1, HE5

-	Marking Guidelines	100
	Criteria	Marks
i	• writes $\frac{dt}{dx}$ as a function of x	1
	• integrates to find t as a function of x	1
	• rearranges to find x as a function of t	1
-	• deduces $x < k$	1
i	$i \cdot finds a in terms of x$	1
	• notes that $v > 0$ and α and ν have opposite signs to make required deductions	1 1
i	ii • finds x when $v = \frac{4}{100}k^2$	
	• finds corresponding value of t	

d management

i. $\frac{dx}{dt} = (k - x)^{2}$ $\frac{dt}{dx} = (k - x)^{-2}$	$x = k \frac{kt}{kt+1} \text{where} 0 < \frac{kt}{kt+1} < 1$ $\therefore x < k$
$t = \left(k - x\right)^{-1} + c$	ii $a = \frac{1}{2} \frac{d}{dx} v^2$
$ \begin{cases} t = 0 \\ x = 0 \end{cases} \Rightarrow \begin{cases} 0 = k^{-1} + c \\ \vdots c = -\frac{1}{k} \end{cases} $	$=\frac{1}{2}\frac{d}{dx}(k-x)^4$
$\therefore t = \frac{1}{k - x} - \frac{1}{k}$	$= -2(k-x)^{3}$ $x < k \Rightarrow v > 0 \text{ and } a < 0$
$t + \frac{1}{k} = \frac{1}{k - x}$	Hence particle is always moving right and slowing down.
$\frac{kt+1}{k} = \frac{1}{k-x}$	iii. $v = (k - x)^2$
$k \qquad k - x$ $k - x = \frac{k}{kt + 1}$	$=\left(\frac{k}{kt+1}\right)^2$
$x = k - \frac{k}{kt + 1}$	Initially $v = k^2$. Hence particle has 1% of initial speed when $\frac{1}{(kt+1)^2} = \frac{1}{100}$
$=\frac{k(kt+1)-k}{kt+1}$	$(kt+1)^{-100}$ $kt+1=10$ $t = \frac{9}{k} \text{ and } x = \frac{9k}{10}.$
$=\frac{k^2t}{kt+1}$	**
kt+1	Hence particle has travelled $\frac{9k}{10}$ m and taken $\frac{9}{k}$ s.

b. Outcomes assessed: PE3, HE3, HE7

Marking Guidelines

. Criteria	Marks
i • writes expression for ${}^{n+1}C_r - {}^{n}C_r$	1
• rearranges to obtain required result	1
ii • uses result from i. to write required sum as difference of two sums	1
cancels out terms to simplify and evaluate	: 1

Answer

$$i. {}^{n+1}C_r - {}^{n}C_r = \frac{(n+1)!}{r!(n+1-r)!} \frac{n!}{r!(n-r)!}$$

$$= \frac{n!}{r!(n+1-r)!} \{(n+1) - (n+1-r)\}$$

$$= \frac{n! \cdot r}{r!(n+1-r)!}$$

$$= \frac{n! \cdot r}{r!(n+1-r)!}$$

$$= \frac{n!}{(r-1)!} \frac{n!}{(n+1-r)!}$$

$$= \frac{n!}{(r-1)!} \frac{n!}{(n+1-r)!}$$