* TO ATTRESINES IN THE STATE OF THE STATE OF

Student Number:_____

St. Catherine's School Waverley

3rd June 2010

HSC ASSESSMENT TASK 3

Extension I Mathematics

 ${\it Time~allowed:}$

55 minutes

Total marks:

37

INSTRUCTIONS

- · Marks for each part of a question are indicated
- All questions should be attempted on the separate paper provided
- Each question should start on a new page.
- Solutions to all questions should be in one booklet.
- · All necessary working should be shown
- Start each question on a new page
- Approved scientific calculators and drawing templates may be used badly arranged work.

Page 1 of 5

Question 1

Marks

A spherical balloon is being blown up so that its surface area is increasing at the constant rate of $6\,cm^2/s$.

- (i) Find the rate of increase of the radius when the radius is 5cm.
- (ii) Hence, find the rate at which the volume is then increasing. 3

Question 2 (Start a new page)

In a group of 1000 computers linked to each other via the internet, the number N infected with a virus at time t years is given by $N = \frac{1000}{1 + ce^{-1000t}}$, where c is a constant.

- (i) Show that, eventually, all the computers will be infected with the virus.
- (ii) Suppose that when t = 0 only one computer was infected with the virus. After how many days will 50% of the computers be infected? 3

$$4 \text{ (iii)} \qquad \text{Show that } \frac{dN}{dt} = N(1000 - N).$$

Question 3 (Start a new page)

The acceleration of a particle moving in a straight line is given by $\ddot{x} = 3x - 2$, where x is the displacement, in metres, from the origin O and t is the time in seconds. The particle is initially at rest at x = 2.

- (i) Show that $v^2 = 3x^2 4x 4$, where v is the velocity of the particle is in m/s.
- (ii) Determine if the particle passes through the origin.

 Justify your answer.
 - iii) Determine the displacement when $v = 2\sqrt{7}$.

3

Question 4 (Start a new page)

Marks

A particle is projected from the point (0,a) with a velocity of Vm/s, and at an angle of 45° to the horizontal.

The equations of motion for the particle are given by $\ddot{x} = 0$ and $\ddot{y} = -g$.

- (i) By means of calculus derive expressions for the horizontal and vertical positions of the particle at time t.
- (ii) Using the expressions from part (i), show that the path of the particle is given by the Cartesian equation $y = a + x \frac{gx^2}{V^2}$.

A tennis player returns a ball served to him by hitting it back at an angle of projection of 45° and an initial speed V m/s.

At that instant the ball is 1 metre above the ground and its horizontal distance from the net is 9.3 metres. The ball clears the net at a height of 2.3 metres.

- (iii) Show that the ball is initially hit with a speed of approximately 10.3 m/s^2 . (Assume $g = 9.8 m/s^2$.)
- (iv) How far from the net does the ball land?

Page 3 of 5

Question 5 (Start a new page)

Year 12 Extension 1 Assessment Task #3

A particle moves in straight line and its position at time t is given by

 $x = 2 + \sin 2t + \cos 2t$

- (i) Show that the particle is undergoing simple harmonic motion about r=2.
 - Find the amplitude of the motion.
- (iii) Find when the particle first reaches maximum speed after t = 0. 3

End of Task

$\frac{Q_1(1)}{dt} \frac{A = 4\pi r^2}{dt} \frac{dA = 6}{dr} \frac{dA = 8\pi r}{dr}$
$\frac{dt}{dr}$
$\frac{dr = dA \times dr}{dt dt dA} 0 \therefore dr = 1$
at at da V da sur
= 6 × <u>L</u> 8TT
8111
= <u>3</u>
भार
when $r=5$ $\frac{dr}{dt} = \frac{3}{20\pi}$
(1) $V = 4\pi r^3$ $dv = 4\pi r^2$ (1)
3 dr
$\frac{dy = dV \times d\Gamma}{dt dr dt} \qquad \bigcirc$
- 11Tr > 3
= 4Tr2 × 3 2017
$= 15 \text{ m}^3/\text{s}$ (1)
Q2 N= 1000
$\frac{Q_2}{1+ce^{-n\omega t}}$
(i) as $t \rightarrow \infty e^{-1000t} \rightarrow 0$: $N \rightarrow 1000$
. eventually all computer will be infected (
exemples will be infected
(11) when $t = 0$ $N = 1$ find t when $N = 50$
() was the 10 - 30
$1 = 1000 \Rightarrow 1 + C = 1000 \Rightarrow C - 990 \bigcirc$
$\frac{1 = 1000 \implies 1 + C = 1000 \implies C = 999}{1 + C}$
: N = 1000
1+999 e-1000t

. ,	
when N=	500
45	
S00 =	1+ 999 e-1000t
Sm(11 pag	icoot) 1000
1+ 99	e^{-icoot}) = 1000 $9e^{-isoot}$ = 2 $9e^{-icoot}$ = 1 e^{-icoot} = $\frac{1}{999}$
. 90	79 e-1000t = 1
	e-1000t = 1
•	-1000t = In 1 1
	* No deduction
	= 0.006907 years for not in = 2.52 days (2dp)*
	= 2.52 days (2dp)*
6.0	(
(111) N =	1000 = 1000 (1+ce-1000t)-1 1+ce-1000t
	$= -1000 (1 + ce^{-1000t})^{-2} ce^{-1000t}, -1000$
	•
	$= \frac{1000^2}{(1 + ce^{-1000C})^2}, ce^{-1000C}$
	(1 + ce-1000E)2
	= N" Ce-1000t
	= N (NCe-1000t)
	= N (1000-N)* ()
*	
*Note;	N = 1000
	1+00
N +	$NCe^{-1000t} = 1000$: $NCe^{-1000t} = 1000 - N$
	: NCE = 1080-N
<u>.</u>	

$83 \qquad \ddot{x} = 3x - 2 \qquad \text{when } t = 0 x = 2 \text{(1)}$
$\frac{d(\frac{1}{2}v^{2}) = 3x-2}{dx^{2}}$ $\frac{1}{2}v^{2} = \frac{3x^{2}-2x+6}{2}$
dr 2
$\frac{1}{2}v^2 = 3x^2 - 2x + C$
$\chi = \partial v = 0$ $0 = 6 - 4 + C$ $-2 = C$
-2 = C
$\frac{1}{2}v^{2} = 3x^{2} - 2x - 2$
· · · · · · · · · · · · · · · · · · ·
$v^2 = 3x^2 - 4x - 4$
(11) IF particle passes through origin X = 0 (1)
(11) 17 particle passes through origin x=0
: $v^2 = -4$ this is not possible: particle does not pass through the origin O
this is not possible i particle does not pass
through the origin (1)
(111) Sub 257 into 1) N= 257
$28 = 3x^2 - 4x - 4$
$3x^{2} - 4x - 32 = 0$ $(3x + 8)(x - 4) = 0$ $\therefore x = -\frac{8}{3}, 4$ (1)
(3x+8)(x-4)=0
1 2 = -8 - 4 (1)
3,7
Since particle starts at x=2 and hose ()
Since particle starts at $x=2$ and does 0 not pass through the origin the displacement when $v=2\sqrt{7}$ is $x=4$
The pass through the origin the displaceme
$\frac{\omega \pi \omega n}{v} = \frac{v + \omega x}{v} = \frac{x + 4}{v}$
·

Qn	Solutions	Marks	Comments: Criteria
4	$ \dot{y} = \cos 45^{\circ} $ $ \dot{x} = V \cos 45^{\circ} $ $ \dot{z} = V \cdot \frac{1}{\sqrt{2}} $ $ = \frac{\sqrt{2}V}{2} $ $ \dot{y} = \sin 45^{\circ} $ $ \dot{y} = \sin 45^{\circ} $ $ \dot{y} = V \sin 45^{\circ} $ $ = V \cdot \frac{1}{\sqrt{2}} $ $ = \frac{\sqrt{2}V}{2} $		V mean Imark
	Horizontal displacement $ \dot{x} = \frac{\sqrt{2} V}{2} $ $ \dot{y} = -g$ $ \dot{y} = \int g dt $ $ = \frac{\sqrt{2} V t}{2} + C $ At $t = 0$, $\dot{y} = \frac{\sqrt{2} V}{2}$ $ \dot{y} = -g(0) + D $ $ \dot{y} = -g(0) + D $ $ \dot{y} = -g(0) + V_{2} V $ $ \dot{y} = -g(0)^{2} + V_{2} V t + E $ At $t = 0$, $y = 0$ $ \dot{y} = -\frac{1}{2}gt^{2} + V_{2} V t + Q $ $ \dot{y} = -\frac{1}{2}gt^{2} + V_{2} V t + Q $ $ \dot{y} = -\frac{1}{2}gt^{2} + V_{2} V t + Q $	X 4	

Qn	Solutions	Marks	Comments: Criteria	Qn
4(i)	From jart is			Sin -
	z= VIVt and y= a+ VIVt - 1gt	2		
)X		
	$= \alpha + 2\alpha - \frac{1}{2}g \frac{4x^2}{2V^2}$			
)	ie $y = a + x - \frac{gx^2}{V^2} $			
(i)	p y			
	23m			
	0 9.3 m			
	$y = a + x - \frac{9x^2}{y^2}$			
)	$2.3 = 1 + 9.3 - \frac{9.8(9.3)}{1/2}$			
	$\frac{1}{\sqrt{2}} = \frac{9.8(9.3)^{2}}{\sqrt{2}} = 10.3 - 2.3 = 8$]		
	8 V= 9-8 (9.3) =		که احد	
	V= 9-8(9.3) ² X		not shown	
	$V=\pm\sqrt{\frac{9.8(9.3)^2}{8}}=\pm10.3 \text{ m/s}$		To prove	
	The ball is initially but with a yeard of approx 10.3 m/s.		jue)	

Qn	Solutions	Marks	Comments: Criteria
	The particle reaches the endquints of		
	its motion when x = 0.		
	. 0 = 2 cos 2t - 2 sindt		
	$\frac{2\sinh 2t}{2\cos 2t} = \frac{2\cos 2t}{2\cos 2t}$		
-	fandt = 1		
	2t=#, 5# X		_
	$\therefore x = d + \sin \frac{\pi}{q} + \cos \frac{\pi}{q} \left(\int_{Q}^{Q} \int_{Q}^{Q}$)
	= 2+ ± + ±		
	$=2+\frac{2}{\sqrt{12}}$ $=2+\sqrt{12}$ $=2+\sqrt{12}$		
-	and $z = 2 + \sin \frac{5\pi}{4} + \cos \frac{5\pi}{4}$ (for $dt = \frac{1}{4}$	(A)	
	=2-+		
	$= 2 - \frac{2}{\sqrt{2}}$ $= 2 - \sqrt{2}$ $= 2 - \sqrt{2}$ $= 2 - \sqrt{2}$ $= 2 - \sqrt{2}$	1	
	2-12		
	Since the centre of the motion is at x=2, the amplitude is \$2,	X	
	at x=2, the the freen the centre the distance between the centre and either endpoints		

Qn	Solutions	Marks	Comments: Criteria
4 (1)	The ball hits the ground at $y=0$.	\mathcal{L}	
6 ci	i = 2+sin2t + cos 2t i = 2 cos 2t - 2 sin2t v i = -4 sin2t - 4 cos 2t v = -4 (sin2t + cos 2t) = -4 (x-2), v from x = 2+ sin2t + cos 2t = -n x v where x = x-2 n = 2 Since the acceleration is proportional to the displacement, the particle undergoes SHM	22t J	X

riteria	•	Qn	Solutions	Marks	Comments: Criteria
		Sin	", The maximum speed occurs who the farticle passes through the centre of motion, in at x=2		
			$2 = 2 + \text{Sindt} + \cos 2t$ $\sin 2t + \cos 2t = 0$		
			sindt = - cordt X coset coset	3	
1			t = 3 secondo after t=0		
			or ale a=0 is4 sin2t - 4 cos2t=0		
			Sin 2t + as 2t t=0 efe- as observe)		