

# St. Catherine's School

## Year 10AB Mathematics Yearly Examination October 2007

Time allowed:

2 hours + 5 minutes reading time

### INSTRUCTIONS

- There are 27 questions in this paper.
- Marks for each part of a question are indicated.
- All questions should be attempted.
- All necessary working should be shown
- Approved scientific calculators and drawing templates may be used

| Algebra                       | Q1-5   |     | <br>/ |
|-------------------------------|--------|-----|-------|
| Solids                        | Q6     | Q12 | /     |
| Co-ordinate geometry & graphs | Q7,8   | Q27 | /     |
| Consumer arithmetic           | Q9-11  |     | /     |
| Trigonometry                  | Q13-20 |     | 1     |
| Surds                         | Q21-23 |     | /,    |
| Probability                   | Q24-26 |     | /     |

| 1. | Simplify each of the following algebraic expressions | (answers without negative |
|----|------------------------------------------------------|---------------------------|
|    | indices):                                            |                           |

$$6x^4 \times 3x^3$$

(b) 
$$(8y^3)^{\frac{1}{3}}$$

(c) 
$$(-2m^3)^{-2}$$

a) 
$$\frac{14x-8}{3} = 5x+7$$

b) 
$$m^2 = 25$$

c) 
$$(x-4)^2 = 9$$

St Catherine's School

2

2

3. Solve the following quadratic equations by <u>anv</u> suitable method:

(a) 
$$x^2 + 5x - 6 = 0$$

2

a) 
$$6x-2 < 3x+10$$



**(b)** 
$$6x^2 - x - 1 = 0$$

2

b) 
$$5 - 2x \ge -35$$

---

3

2

2

$$x + 2y = 6$$
$$-2x + y = -2$$

(c) 
$$7x^2-4x-1=0$$

Factor the following quadratic expressions:

(a) 
$$4r^2 - 100$$

2

2

2



3

(b) 
$$x^2 + 4x - 32$$

(c)  $3x^2 + 2x - 1$ 

a) Sketch the parabola  $y = x^2 - 8x - 20$  showing its x and y intercepts and its



b) Sketch the curve  $y = -x^3 + 1$  showing its x and y intercepts.



c) Using a sketch diagram of  $y = x^2$  and y = 2 - x, show that  $x^2 = 2 - x$ has 2 solutions.



8.

Choose from this set of equations the correct one for each of the four graphs shown:

A 
$$y = -(x-2)$$

A 
$$y = -(x-2)^2$$
 B  $y = -(x+2)^2$  C  $y = (x+2)^3$  D  $y = x^3 + 2$ 

C 
$$y = (x+2)^3$$

D 
$$y = x^3 + 2$$

E 
$$y = -x^2 - 2$$

$$F v = -x^2 +$$

$$G y = (x-2)^3 + 8 H$$

E 
$$y=-x^2-2$$
 F  $y=-x^2+2$  G  $y=(x-2)^3+8$  H  $y=(x-2)^3$ 





b)



c)



d)



3

| ).  | The tax laws allow depreciation of 30% p.a. on computer equipment. Michael's computer was worth \$8000 at the beginning of the tax year in 2007. What will it be worth in 3 years' time? (to nearest dollar)      | 3             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |                                                                                                                                                                                                                   |               |
|     |                                                                                                                                                                                                                   |               |
|     |                                                                                                                                                                                                                   |               |
| 10. | Melissa works at Colesworths, and as a staff member gets 20% off all purchases, including sale items. She buys a dress in a "30% off" sale. The original price of the dress was \$120. How much does Melissa pay. | <b>2</b><br>e |
|     |                                                                                                                                                                                                                   |               |
|     |                                                                                                                                                                                                                   |               |
|     |                                                                                                                                                                                                                   |               |
| 11. | a) Cathy buys a pair of shoes marked "30% off' in a sale, and pays \$66.50 for the Find the original price of the shoes.                                                                                          | em.           |
|     |                                                                                                                                                                                                                   |               |
|     | b) Alex buys a bicycle valued at \$320 on terms of 10% deposit and monthly instalments of \$20 for 1.5 years.                                                                                                     |               |
|     | How much does she pay for the bicycle on these terms?                                                                                                                                                             | -             |
|     | At the common                                                                                                                                                                                                     | -             |
|     | How much interest does she effectively pay on these terms?                                                                                                                                                        |               |
|     | 11011 11111111                                                                                                                                                                                                    | _             |

|            | liagram shows an open metal box which is used to carry sand.                      |
|------------|-----------------------------------------------------------------------------------|
| It is 2    | 2 m long and the ends are 80 cm square.                                           |
|            |                                                                                   |
| (i)        | Find the exact volume of the box in cubic centimetres                             |
|            |                                                                                   |
| (ii)       | Find the exact area of sheet metal required to make the box in square metres      |
|            |                                                                                   |
|            |                                                                                   |
|            |                                                                                   |
| (iii)<br>1 | This conical vessel is used to fill the box above.                                |
|            | $\alpha$ ) What is the volume of the cone?                                        |
|            |                                                                                   |
|            |                                                                                   |
|            | β) How many times must it be filled and emptied into the box, to fill up the box? |

13.



A boy is flying a kite on a 200 m length of string. The string makes an angle of  $20^{\circ}$  with the ground. Label the diagram above and use it to calculate the height h of the kite above the ground.

14. Find the size of ∠ABC to nearest degree.



15. Find the size of \( \sqrt{KLM} \) to nearest minute, using the sine rule



2

2

3

16. True or false?. For all x

(a)  $\cos x = \sin x$ 



(c)  $\sin x = \sin(90^{\circ} - x)$ 



1

1

1

1

17. If  $\cos \theta = -\frac{4}{11}$  and  $\tan \theta < 0$ , find the exact value of  $\sin \theta$ .

3

18. Find the exact value of:

(a) sin 120°

1

(b)  $\tan 135^{\circ}$ 

- 19. A pirate has buried his treasure. From the beach at point A, he walked 90 m on a bearing of  $140^{\circ}$  to B and then 100 m on a bearing of  $180^{\circ}$  to bury the treasure at C.
  - (i) Complete this information on the diagram below, clearly marking the length of *AB*, *BC* and ∠*ABN* and ∠*ABC*.



(ii) Calculate the distance AC in a straight line, to the nearest metre.

20. Find all possible values of  $\theta$ , for  $0^{\circ} \le \theta \le 180^{\circ}$ , to the nearest degree if  $\sin \theta = \frac{1}{5}$ .

21. Expand and simplify the following:

a) 
$$\left(3+\sqrt{3}\right)^2$$

| <b>b</b> ) | $(3+\sqrt{3})(3-\sqrt{3})$ |
|------------|----------------------------|
|            |                            |
|            | TEPE Market Land           |

22. Express with a rational denominator in simplest form:

$$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}$$

Show that  $\frac{6\sqrt{2}+5}{\sqrt{3}} - \frac{12+5\sqrt{2}-3\sqrt{6}}{\sqrt{6}}$  is a rational number

2

3

2

2

| 24  |  |
|-----|--|
| Z4. |  |

a) Fill in this tree diagram to show the possible outcomes of tossing a fair coin three times

2

OUTCOMES



Use the tree diagram to calculate the following probabilities

| i) l | e(tossing 3 hea | ids) |  |
|------|-----------------|------|--|
| -, - |                 |      |  |

1

| (ii | P(tossing  | exactly | 2 | heads) |  |
|-----|------------|---------|---|--------|--|
| 11) | T (mooning | 0,100   |   |        |  |

A bag contains 3 red and 9 green sweets. Meg chooses two of the sweets at random (without replacement).

Draw up a tree diagram to show all possible outcomes

2

What is the probability;

a) Both sweets are green?

b) At least one sweet is red?

1

c) Meg takes one of each kind?\_

1

The 100 m race at the Sports Carnival has 8 entrants. They are allocated lanes at random. Julie is one of the entrants.

| (a) Write True or False:                    |  |
|---------------------------------------------|--|
| "Julie has one chance in eight of winning." |  |
| Explain your answer:                        |  |
|                                             |  |
|                                             |  |
| (b) Write True or False:                    |  |

St Catherine's School

On the number plane below plot the points A(0,1), B(-4, 1) and 27. C(-2,7)



(vi) Find the length of side BC.

2

(vii) Find the area of the triangle ABC.

2

Find the midpoint E of AC.

Find the gradient of AC.

1

1

Write down the gradient of any line perpendicular to AC.

Find the equation of the line through  ${\cal E}$  perpendicular to  ${\cal AC}$ (v)

2

1

End of Examination

St Catherine's School

Year 10 A, B

15

St Catherine's School

Year 10 A, B





## St. Catherine's School

## Year 10AB Mathematics

### Yearly Examination October 2007

Time allowed:

2 hours + 5 minutes reading time

#### INSTRUCTIONS

- There are 27 questions in this paper.
- Marks for each part of a question are indicated.
- All questions should be attempted.
- All necessary working should be shown
- · Approved scientific calculators and drawing templates may be used

| Algebra                       | Q1-5   |     | / |
|-------------------------------|--------|-----|---|
| Solids                        | Q6     | Q12 | / |
| Co-ordinate geometry & graphs | Q7,8   | Q27 | / |
| Consumer arithmetic           | Q9-11  |     | / |
| Trigonometry                  | Q13-20 |     | / |
| Surds                         | Q21-23 |     | / |
| Probability                   | Q24-26 |     | / |



(a) 
$$6x^4 \times 3x^3 = 18 \times 7$$

(b) 
$$(8y^3)^{\frac{1}{3}} = 2y$$

(c) 
$$(-2m^3)^{-2} = \frac{1}{4m^6}$$

2. Solve the following equations:

(a) 
$$\frac{14x-8}{3} = 5x+7$$
  
 $14x-8 = 15x+21$   
 $-29 = x$   $x = -29$ 

e) 
$$(x-4)^2 = 9$$
  
 $x - 4 = \pm 3$   $x = 7$ 

0

2

3. Solve the following quadratic equations by <u>any</u> suitable method:

(a) 
$$x^2+5x-6=0$$
  
 $(x-1)(x+6)=0$   
 $x=1$  or  $x=-6$ 

(b) 
$$6x^2 - x - 1 = 0$$
  
 $(3x + 1)(2x - 1) = 0$   
 $x = -\frac{1}{3}, x = \frac{1}{2}$ 

(c) 
$$7x^2 - 4x - 1 = 0$$
  $x = \frac{4 \pm \sqrt{16 - 4x7x - 1}}{14}$   
=  $\frac{4 \pm \sqrt{44}}{14} = \frac{2 \pm \sqrt{11}}{7}$ 

4. Factor the following quadratic expressions:

(a) 
$$4r^2-100 = 4(r-5)(r+5)$$

(b) 
$$x^2 + 4x - 32 = (x + 8)(x - 4)$$

(c) 
$$3x^2+2x-1$$
  $(3 \times 1)(x+1)$ 

5. Solve and graph on the number line provided:

a) 
$$6x-2 < 3x+10$$
  
 $3x < 12$   
 $x < 4$ 

2

b) 
$$5-2x \ge -35$$
 $-2> 2> 40$ 
 $2> 20$ 
 $2> 20$ 

c) Find the simultaneous solution of this pair of equations:

6. Calculate the surface area of the cylinder below (correct to 3 significant figures).



2

2

2

2

2

7. a) Sketch the parabola 
$$y = x^2 - 8x - 20$$
 showing its x and y intercepts and its

$$x=0 \quad y=-20$$

$$y=0 \quad x^{2}-8x-20=0$$

$$(x-10)(x+2)=0$$

$$x=10, x=-2$$

$$V: x = \frac{-b}{2a} = \frac{8}{2} = 4$$

$$V(4, -36)$$



3

3

 $\left( \cdot \right)$ 

b) Sketch the curve 
$$y = -x^3 + 1$$
 showing its x and y intercepts.



c) Using a sketch diagram of 
$$y=x^2$$
 and  $y=2-x$ , show that  $x^2=2-x$  2 has 2 solutions.



A 
$$y = -(x-2)^2$$
 B  $y = -(x-2)^2$ 

B 
$$y = -(x+2)^2$$
 C  $y = (x+2)^3$ 

C 
$$y = (x+2)^3$$

D 
$$y = x^3 + 2$$

$$E \quad y = -x^2 - 2$$

$$F \quad y = -x^2 + 2$$

G 
$$y=(x-2)^3+8$$

F 
$$y=-x^2+2$$
 G  $y=(x-2)^3+8$  H  $y=(x-2)^3$ 









|    | good and a graphent Michael's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9. | The tax laws allow depreciation of 30% p.a. on computer equipment. Michael's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9. | The tax laws unto we are a second of the tax year in 2007 What will it be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | The tax laws allow depreciation of 50% plus on computer was worth \$8000 at the beginning of the tax year in 2007. What will it be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | of the state of th |
|    | worth in 3 years' time? (to nearest dollar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| years mile. (co zeros) |
|------------------------|
| $A = D(1-r)^3$         |
|                        |
| $=$ \$8000 × $(0.7)^3$ |
| - 18000 K (01/)        |
| =\$2744                |
| = 1 & 1 4 4            |
| <del></del>            |

| \$120. How inden does wenter pay. |
|-----------------------------------|
| 70% of 80% of \$120               |
| 7 x 8 x 120 = \$67.20             |
|                                   |

$$\frac{70\% \text{ of } x = $66.50}{100\% \text{ of } x = 66.5 \times 100}$$

$$= $95$$

How much does she pay for the bicycle on these terms?

How much interest does she effectively pay on these terms?

3

2

The diagram shows an open metal box which is used to carry sand.

It is 2 m long and the ends are 80 cm square.



$$A = 3x.8x2 + 2x(.8)^2$$
= 6.08 m<sup>2</sup>



This conical vessel is used to fill the box above.

$$V = \frac{1}{3} \times 11 \times 12^{2} \times 12$$
= 1809.6 cm<sup>3</sup>

2

2

2

2

13.



 $\sin 20^9 = \frac{h}{200}$ 

A boy is flying a kite on a 200 m length of string. The string makes an angle of 20° with the ground. Label the diagram above and use it to calculate the height h of the kite above the ground.

### Find the size of $\angle ABC$ to nearest degree.



 $\cos B = \frac{12}{54}$   $B \stackrel{!}{=} 77^{\circ} \quad (\text{neasest}^{\circ})$ 

## Find the size of $\angle KLM$ to nearest minute, using the sine rule



3

$$x = 0.8163$$
 $x = 54^{\circ}43^{\circ}$ 

#### 16. True or false?.

For all x



(b) 
$$\cos x = \sin(90^\circ - x)$$



1

1

1

1

(d) 
$$\tan x = \frac{\sin x}{\cos x}$$

If 
$$\cos \theta = -\frac{4}{11}$$
 and  $\tan \theta < 0$ , find the exact value of  $\sin \theta$ . and  $\mathbb{Q}$  3



#### Find the exact value of:

(a) 
$$\sin 120^{\circ} = \sin(180 - 60)$$

$$= \sin(180-60)$$
 1  $= \sin 60$ 

(b) 
$$\tan 135^{\circ} = \tan (180 - 45^{\circ})$$
  
=  $-\tan 45^{\circ}$ 

- 19. A pirate has buried his treasure. From the beach at point A, he walked 90 m on a bearing of  $140^{\circ}$  to B and then 100 m on a bearing of  $180^{\circ}$  to bury the treasure at C.
  - Complete this information on the diagram below, clearly marking the length of AB, BC and ∠ABN and ∠ABC.



(ii) Calculate the distance AC in a straight line, to the nearest metre.

$$\frac{d^{2} = 90^{2} + 100^{2} - 2 \times 90 \times 100}{31888 \cdot 8}$$

$$\frac{d = 178.6 \text{ m}}{d = 179 \text{ m} \text{ (redest m)}}$$

20. Find all possible values of  $\theta$ , for  $0^{\circ} \le \theta \le 180^{\circ}$ , to the nearest degree if  $\sin \theta = \frac{1}{5}$ .

$$Sin \theta = \frac{1}{5}$$

$$\theta = 12^{\circ}, 180 - 12^{\circ}$$

$$= 12^{\circ} \text{ or } 168^{\circ}$$

21. Expand and simplify the following:

b) 
$$(3+\sqrt{3})(3-\sqrt{3})$$
 2

Q. Express with a rational denominator in simplest form:

$$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = \frac{\sqrt{18}-\sqrt{12}}{6}$$

$$= 3\sqrt{2}-2\sqrt{3}$$

Show that  $\frac{6\sqrt{2}+5}{\sqrt{3}} = \frac{12+5\sqrt{2}-3\sqrt{6}}{\sqrt{6}}$  is a rational number  $\frac{6\sqrt{2}+5}{\sqrt{3}} = \frac{12+5\sqrt{2}-3\sqrt{6}}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}$   $= \frac{6\sqrt{6}+5\sqrt{3}-12\sqrt{6}+5\sqrt{12}-18}{3}$   $= 2\sqrt{6}+\frac{5}{3}\sqrt{3}-2\sqrt{6}-\frac{5}{6}\times 2\sqrt{3}+\frac{18}{6}$  = +2

2

3

2

24.

- a) Fill in this tree diagram to show the possible outcomes of tossing
- 2



- (b) Use the tree diagram to calculate the following probabilities

| i) P(tossing 3 heads) | 8 |  |
|-----------------------|---|--|
|-----------------------|---|--|

25. A bag contains 3 red and 9 green sweets. Meg chooses two of the sweets at random (without replacement).

Draw up a tree diagram to show all possible outcomes



What is the probability;

What is the probability,

a) Both sweets are green? 
$$P(qq) = \frac{q \times 8}{12 \times 11} = \frac{6}{11}$$

b) At least one sweet is red? 
$$\rho(\tilde{q}\tilde{q}) = 1 - \frac{6}{11} = \frac{5}{11}$$

c) Meg takes one of each kind? 
$$\frac{P(Rg)+(GR)}{P(Rg)} = \frac{2x^3}{12} \times \frac{9}{11} = \frac{9}{22}$$

The 100 m race at the Sports Carnival has 8 entrants. They are allocated lanes at random. Julie is one of the entrants.

| (a) Write True or False: | (a) \ | Write | True o | r False: |  |
|--------------------------|-------|-------|--------|----------|--|
|--------------------------|-------|-------|--------|----------|--|

| • •                                         |          |   |
|---------------------------------------------|----------|---|
|                                             |          |   |
| WT 41 4 4 1 1 1 1 1 C 1 1 22                | <u> </u> | 1 |
| "Julie has one chance in eight of winning." | 1        | 2 |

Explain your answer:

| ) "Julie has one chance in eight of running in lane 3." |  |
|---------------------------------------------------------|--|
|---------------------------------------------------------|--|





- Find the length of side BC.



Find the area of the triangle ABC.

$$A = \frac{1}{2}b \times h$$

$$= \frac{1}{2} \times 4 \times 6$$

$$= 12 u^{2}$$

Find the midpoint E of AC.

| <br>E_ | <del>(-1)</del> | 4) | <br>        |
|--------|-----------------|----|-------------|
| <br>   |                 |    | <br><u></u> |

| Find the gradient of AC. $y - y$ , |
|------------------------------------|
| $m = \frac{1}{2\sqrt{2}}$          |
| <u> </u>                           |
| = 3                                |

Write down the gradient of any line perpendicular to AC.

| VII die Branch | m | = | 3 | <br> |
|----------------|---|---|---|------|
|                |   |   |   | <br> |



1

1

1

CO

2

End of Examination

(v)

2