

St. Catherine's School Waverley

2013

PRELIMINARY ASSESSMENT TASK 3

(15%)

Working time 57 mins Reading time 3 minutes

• Marks for each question are indicated

General Instructions

- Start each question in a new booklet.
- Write using black or blue pen only.
- Board-approved calculators may be used.
- All necessary working must be shown.
- Marks may be deducted for careless or badly arranged work.

Name:	

Mathematics

TEACHER'S USE ONLY

Linear Functions & Lines	Q1, Q4	/16
Quadratic Polynomial	Q2, Q3, Q5	/22
Locus & Parabola	Q6	/12
TOTAL		/50

Circle the correct answer: Questions 1, 2 and 3 are worth 1 mark each.

1. The points A, B, C and D have coordinates (0,a), (3,4), (6,2) and (-3,-1) respectively.

What is the value of a if AB is parallel to DC?

- (A) a = 2.5
- (B) a = 3
- (C) a = 3.5
- (D) a=5
- 2. Which of the following is true for the equation $7x^2 5x + 2 = 0$?
 - (A) No real roots
 - (B) One real root
 - (C) Two real distinct roots
 - (D) Three real roots
- 3. What is the value of k if the sum of the roots of $x^2 (k-1)x + 2k = 0$ is equal to the product of the roots?
 - (A) = -3
 - (B) -2
 - (C) -1
 - (D) 1

Question 4. (15 Marks)

(a)

The diagram shows the points A(-2, 3) and B(4, 1). M is the midpoint of the interval AB. I is the line through M perpendicular to AB.

(i)	Find the gradient of the line AB.	1
(ii)	Find the coordinates of M .	1
(iii)	Show that the equation of AB is $x+3y-7=0$.	1
(iv)	Show that the equation of l is $3x-y-1=0$.	1
(v)	Find the coordinates of C , the point of intersection of l and the y-axis.	1
(vi)	Show that C is equidistant from A and B	2
(vii)	Find the perpendicular distance from C to the line AB .	2
(viii)	Hence find the area of the triangle ABC.	2
(ix)	State the inequality that defines the region of the half-plane	1

(b)	Find the equation of the line that passes through the point of intersection of	3
(-)	2x-y-3=0 and $5x-y=0$ and passes through the point (1.2)	_

under the line AB.

Que	stion 5	(22 Marks)	Marks
(a)		the coordinates of the points of intersection of the line $2x-y-2=0$	3
	and t	the hyperbola $xy = 4$	
(b)	Solv	e the equation for x: $3^{2x} - 8 \times 3^x + 15 = 0$.	3
(c)		what values of k does the equation $x^2 + (k+6)x - 2k = 0$ have two real different roots?	2
(d)		and β are the roots of the quadratic equation $2x^2 - 5x - 8 = 0$. Without firmous, find the value of:	ding
	(i)	$\alpha + \beta$	1
	(ii)	lphaeta	1
	(iii)	$\alpha^2 + \beta^2$	2
	(iv)	$\alpha^3 + \beta^3$. 2 .
(e)	Find	the value of k for which the equation $x^2 - (k-4)x + (k-9) = 0$ has	
	(i)	roots which are equal in magnitude, but opposite in sign.	1
	(ii)	roots which are reciprocals of each other	1
(f)	(i)	By finding the discriminant, how many roots does $f(x)$ have, if $f(x) = 2x^2 - 5x + 6$.	2
	(ii)	Explain the graphical meaning of the result in part (i).	. 1
(g)	Show	that the equation $a^2x^2 + x^2 + ax + 2 = 0$ has no real roots	3
	for al	l values of a.	

Question 6 (12 Marks)

Marks

2

- (a) A(0,4) and B(5,0) are two fixed points. P(x,y) is a variable point which moves such that $\angle APB$ is a right angle.
 - (i) Show that the locus of P is the equation of the circle

$$x^2 + y^2 - 5x - 4y = 0$$

- (ii) Find the centre and the radius of the circle in part (i) 2
- (b) A parabola has its vertex at the point (3,1) and its directrix has equation y = -1.
- . (i) What is the focal length?
 - (ii) State the co-ordinates of the focus.
 - (iii) Find the equation of the parabola.
- (c) Consider the parabola $x^2 + 6x 8y + 1 = 0$.
 - (i) Find the coordinates of the vertex 2
 - (ii) Write down the coordinates of the focus.
 - (iii) Write down the equation of the directrix.

End of Task

Nu.	Solutions	Marks	Comments: C	riteria
(1)	$\frac{4-\alpha}{3} = \frac{3}{9}$ $\alpha = 3 \beta$	1		
Ð	$\Delta = b^{2} - 4ac$ = 25 - 4(7)(2)<0 NO REAL ROOTS (A)	1		
3				
	k=-1 (C)			
(1) (a)	i) $m = \frac{3-1}{-2-4}$			
	$= -\frac{1}{3} \times $ $ii) M = \left(\frac{-2+4}{2}, \frac{3+1}{2}\right) \times $		·	
	$= (1, 2)$ iii) $y - y_1 = m(x - x_1)$ $y - a = -\frac{1}{3}(x - 1)$			
	3y-6 = -x+1 x+3y-7=0		·	
	$ \frac{m_{\perp} = 3}{y - 2} = 3\left(x - i\right) \times $			
	y-2 = 3x-3 3x-y-1=0	 1		

Qn	Solutions	Marks	Comments: Criteria
v)	• · · · · · · · · · · · · · · · · · · ·	1	
	-y-1=0 $y=-1$ C 15 $(0,-1)$		
(vi	$\alpha_{CR} = \sqrt{(0+2)^2 + (-1-3)^2}$ $= \sqrt{20}$	2	
	$d_{cg} = \sqrt{(4-0)^2 + (1+1)^2} = \sqrt{20}$		
vij)	:. $d_{CA} = d_{CB}$ $d = \sqrt{(1-0)^2 + (2+1)^2} d = ax_1 + by_1 + c $	2	
viii)	$= \sqrt{10} \text{ UNITS}$ $= \frac{\sqrt{40}}{\sqrt{12+3^2}}$ $= \frac{1(0) + 3(1) - 7}{\sqrt{12+3^2}}$		
	$ \frac{10}{\sqrt{10}} = \frac{10}{\sqrt{10}} $ $ = \sqrt{10} \text{ units} $		
	$O(AB) = \sqrt{(4+2)^2 + (1-3)^2}$ $= \sqrt{40}$	2	
	$A = \frac{1}{2}6h$ $= \frac{1}{2}x\sqrt{40} \times \sqrt{10} $ $= 10 v^{2} $	1 16672	
(x)	X+3y-7<0 ? TEST (0,0)	1	
	0+0-7<0 TRUE REGION IS X+34-7<0		1 for 1 x+3y-7 ≤ 0
			. 7

Qn	Solutions	Marks	Comments: Criteria
b)	2x-y-3=0 0 5x-4 = 6 @	3	
	$\frac{3x-y}{3z+3=0} \bigcirc \bigcirc -0 \bigvee$ $\frac{3x=-3}{3x=-3} \times$		
	X = -1 V		
	y=-5		
	PT OF INTERSECTION IS $(-1,-5)$ $m = 2+5$		
i	$m = \frac{2+5}{1+1}$ = $\frac{7}{2}$ (-1,-5)		
	$y-z=\frac{7}{2}(x-1)$		
	2y-4=7x-7 $7x-2y-3=0$		
	OR		
.	2x-y-3+b(5x-y)=0 $508(1,2)$		
	2-2-3+k(5-2)=0 $3k=3$ $b=1$		
	1/0/5/10		
	$2x-y-3+5x-y=0. \sqrt{2}$ $7x-2y-3=0. \sqrt{2}$		
	. J	-	
			E

. .

Qn	Solutions	Marks	Comments: Criteria
(5)	a) $2x - y - 2 = 0$ 0 xy = 4 2	3	
	y=2x-2 FROM ()		
	$x(2x-2)=4 \text{ INTO } \textcircled{2}$ $2x^2-2x-4=0$		
	$x^2-x-2=0$		
	(x-a)(x+1)=0 $x=2,-1$		
	y=2,-4 Pag intersection ARE $(2,2)$ AND $(-1,-4)$:	
	b) $3^{2x} - 8(3^x) + 15 = 0$ LET $m = 3^x$	3	
	$m^2 - 8m + 15 = 0$		
	(m-3)(m-5) = 0 m = 3,5		
	m = 3,5 $3^{x} = 3$ $3^{x} = 5$ $x = 1 = Log_3 5$		
	c) FOR REAL AND DIFFERENT ROOTS $\Delta > 0$ $A = b^2 - 4ac$	ð	
	$(k+6)^2 - 4(-2k) > 0$		
	12+12k+36+8k70		
	b2+20k+36>0 (k+18)(k+2)>0 -18 /2		
	k<-18, k>-2		
	d)i) $\alpha + \beta = -\frac{b}{a}$ ii) $\alpha \beta = \frac{c}{a}$	<u>)</u> 1	
·	$\frac{3}{2} = \frac{5}{2} = \frac{-8}{2} = -4$	ii),1	
}			

g Qn	Solutions	Marks	Comments: Criteria
	$ i \propto^{2} + \beta^{2} = (\kappa + \beta)^{2} - 2\kappa\beta$ $= (\frac{5}{2})^{2} - 2(-4)$ $= (24)$	ع	
	$= 14\frac{1}{4}$ $ V) \times^{3} + \beta^{3} = (\alpha + \beta)(\kappa^{2} - \alpha \beta + \beta^{2})$ $= (\frac{5}{2})(14\frac{1}{4} + 4)$ $= \frac{365}{6} \text{or} 45\frac{5}{8}, 45.625$	2	
é		_	
	$\begin{array}{c} \alpha + \beta = \frac{1}{\alpha} \\ \lambda - \alpha = k - 4 \\ 0 = k - 4 \\ \vdots k = 4 \end{array}$		
	i) LET ROOTS BE $X = \infty, \frac{1}{2}$		
	$1 = k-9$ $\therefore k = 10$ $f(x) = 2x^2 - 5x + 6$		
	$\Delta = b^2 - 4ac$ $= 25 - 4(2)(6)$	2	
	= -23 < 0 ii). NO ROOTS, ie THE PARABOLA DOES NOT CROSS/TOUCH THE X-AXIS.		

Q	Solutions	Marks	Comments
	9) $a^{2}x^{2}+x^{2}+ax+2=0$ $x^{2}(a^{2}+i)+ax+2=0$	3	
	$\Delta = b^{2} - 4ac$ $= a^{2} - 4(a^{2} + i)^{2}$ $= a^{2} - 8a^{2} - 8$ $= -7a^{2} - 8$		
	Since $a^2 > 0$ FOR ALL a $-7a^2 \le 0$ $-7a^2 - 8 \le -8$ $-7a^2 - 8 \le 0$ FOR ALL a $NO REAL ROOTS$ Since $\Delta < 0$ FOR ALL a		
6	a)i) $m_{p_A} \times m_{p_B} = -1$ $\frac{y-t}{x} \times \frac{y}{x-s} = -1$ (or lythagoras' Method	2	
ļ	$y^{2} - 4y = -(x^{2} - 5x)$ $x^{2} - 5x + y^{2} - 4y = 0$ $(x - \frac{5}{2})^{2} + (y - 2)^{2} = \frac{25}{4} + 4$ hong distances		
	$(x-\frac{5}{2})^2+(y-2)^2=\frac{41}{4}$ $CENTRE = (\frac{5}{2}, 2)$	2	
	RAPIUS = $\sqrt{\frac{41}{2}}$ b) $\sqrt{3}$ $(3,1)$		
	y=-1		
	ii) $FOCUS = (3,3)$ iii) $(x-h)^2 = 4a(y-h)$ $(x-3)^2 = 8(y-1)$	1	

Q	Solutions	Marks	Comments
	c)i) $x^{2}+6x-8y+1=0$ $x^{2}+6x=8y-1$ $(x+3)^{2}=8y-1+9$ $(x+3)^{2}=8(y+1)$.: VERTEX 15 (-3,-1)	2	
	$(x-h)^{2} = 4a(y-k)$ $(x+3)^{2} = 8(y+1)$ Note $4a=8$ $a=2$ $Focus is (-3, 1)$	2	1 for a=2.
	iii) 4=-3		

.4

ι.