

2012

HIGHER SCHOOL **CERTIFICATE**

ASSESSMENT TASK 3 HSC Weighting 15%

Extension 1 Mathematics

General Instructions

- Attempt Questions 1-8.
- Working time 1 hour
- Write using blue or black pen.
- Board- approved calculators may be used.
- All necessary working should be shown.
- Circle the letter of your answer in Q1-4

Total marks - 32

Not all questions are of equal value

Year 12 Extension 1 Assessment Task #3

1 The number N of animals in a population at time t years is given by $N = 100 + Ae^{ht}$ for constants A > 0 and k > 0. Which of the following is the correct differential equation?

$$(A) \frac{dN}{dt} = k(N-100)$$

(B)
$$\frac{dN}{dt} = -k(N+100)$$

(C)
$$\frac{dN}{dt} = -k(N-100)$$

(D)
$$\frac{dN}{dt} = k(N+100)$$

2 The velocity of a particle moving along the x axis is given by $v^2 = 24 + 2x - x^2$. Which of the following expressions is the correct equation for the acceleration of the particle in terms of x?

(A)
$$1-x$$
 (B) $12x + \frac{x^2}{2} - \frac{x^3}{6}$ (C) $1-2x$ (D) $24x + x^2 - \frac{x^3}{3}$

(D)
$$24x + x^2 - \frac{x^3}{3}$$

3 A football is kicked at an angle of α to the horizontal. The position of the ball at time t seconds is given by $x = Vt \cos \alpha$ and $y = Vt \sin \alpha - \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity and v m/s is the initial velocity of projection. What is the maximum height reached by the ball?

(A)
$$\frac{V \sin}{g}$$

(B)
$$\frac{g\sin a}{V}$$

(A)
$$\frac{V \sin \alpha}{g}$$
 (B) $\frac{g \sin \alpha}{V}$ (C) $\frac{V^2 \sin^2 \alpha}{2g}$ (D) $\frac{g \sin^2 \alpha}{2V^2}$

(D)
$$\frac{g\sin^2\alpha}{2V^2}$$

A particle moving in a straight line obeys $v^2 = -x^2 + 2x + 8$ where x is its displacement from the origin in metres and ν is its velocity in ms⁻¹. The motion is simple harmonic. What is the amplitude?

- (A) 2π metres
- (B) 3 metres
- (C) 8 metres
- (D) 9 metres

Question 5: (8 marks)

a) The volume of a cube is increasing at the constant rate of $10cm^3/\sec$.

Find the rate at which the surface area is increasing when the volume is $125cm^3$.

- b) The velocity of a particle is given by $\frac{dx}{dt} = 5x$. Initially the particle is at x = 1.
 - (i) Express x as a function of t
 - Find the exact value of the displacement of the particle when t = 1.
 - \checkmark (ii) Find the value of the acceleration when x = 1.

Question 6: (6 Marks)

If the surrounding air temperature is 20° C, it takes 15 minutes for a cup of tea at a temperature of 80° C to cool to a temperature of 40° C. Given that T is the temperature in degrees Celsius of the tea after t minutes, then Newton's Law of Cooling states that T satisfies the differential equation $\frac{dT}{dt} = k(T-20)$.

- A) Show that $T = 20 + Ae^{kt}$ is a solution of this differential equation.
- b) Find the value of A, and show that $k = \frac{-\ln 3}{15}$
- c) Find the temperature of the tea after 30 minutes.

Question 7: (7 Matks)

On the large planet of HEART, a kat sits at a point P on top of a wall which is 3.6 metres high. It sees a Mouse on the horizontal ground below. The nouse is exactly 4 metres from the base of the wall. The kat jumps horizontally from the top of the wall with initial velocity 6 metres per second. On HEART the acceleration due to gravity is $20ms^{-2}$. Assuming that the jump can be modelled by a projectile, and air resistance can be ignored;

- a) Find expressions for x(t) and y(t), the horizontal and vertical dispplacements of the kat from P after t seconds.
- Find the time taken for the kat to reach the ground
- Find the distance by which the kat fails to reach the nouse.

Question 8: (7 Matks)

A particle is moving in a straight line. At time t seconds, its velocity v metres per second and displacement x metres is given by the equation:

$$v^2 = 48 + 16x - 4x^2$$

Show that motion is Simple Harmonic and state the centre of motion.

End of Task

- b) Find the amplitude of the motion.
- Find the value of the maximum velocity.
- Find the value of the maximum acceleration.

3

Page no. 3 of 4

Course:

Page no. 4 of 4

,	Sourse.	1 450	110,000			204.00.	I ago i	110, 7 01 4
N		cademic Y	ear: 2011-12		1	Marking Scheme for Task:	Academic Y	ear: 2011-12
	Solutions	Marks	Comments] .	Q	Solutions	Marks	Comments
Q Q7		Marks			0 8	Solutions $v^{2} = 48 + 16x - 4x^{2}$ a) $\dot{x} = \frac{d}{dx}(2v^{2}) = \frac{d}{dx}(24 + 8x - 2x^{2})$ $= 8 - 4x$ $\therefore \dot{x} = 8 - 4x$ 1.e. $\dot{x} = -4(x - 2)$ This is in the form $\dot{x} = -n^{2}(x - x_{0})$ \therefore motion is SHM. b) at extremities $v = 0$ $\therefore 48 + 16x - 4x^{2} = 0$ $\therefore 12 + 4x - 2x^{2} = 0$ $(6 - x)(2 + 3x) = 0$ $\therefore x = -2, 6$ $\therefore x = -2$	Academic Y	ear: 2011-12
	When $t = 0$ $x = 0$ $y = 3.6 \Rightarrow (3 = 0)(4 = 3.6)$ $\therefore x = 6t$ $y = -10t^{2} + 3.6$ $10t^{2} = 0$ $10t^{2} = 3.6$ $t^{2} = \frac{3.6}{10}$	1 1	2 each			c) Max Velocity when $\ddot{x} = 0$ le at COM. $v^{\dagger} = 48 + 16x - 4x^{\dagger}$ when $x = 2$ $v^{\dagger} = 48 + 32 - 16$ $v = 64$ $v = 48$: maximum velocity is 8 ms ⁻¹ d) Max acceleration where $v = 0$ ie $x = 6, -2$ now $\ddot{x} = -4(x-2)$ Luken $x = 6$ $\ddot{x} = -16$ ms ⁻² $x = 2$ $\ddot{x} = 16$ ms ⁻²		
						: maximum acceleration 16ms-2		

Page no. 1 of 4

Course:

Page no. 2 of 4

Marking Scheme for Task: ろ	Academic Y	'ear: 2011-12
Q Solutions	Marks	Comments
e _l A	J	
e2 A	1	
Q3 C	t	
Q4 B	1	,
QS a) $\frac{dV}{dt} = 10$ $V = x^3$ $A = 6x^2$ $V = 125$ $\frac{dV}{dt} = 3x^2$ $\frac{dA}{dn} = 12x$ $\therefore x^3 = 125$ $\therefore x^3 = 125$	1	
Now $\frac{dA}{dt} = \frac{dV}{dt} \times \frac{dA}{dV}$ $= \frac{dV}{dt} \times \frac{dA}{dx} \times \frac{dx}{dV}$ $= 10 \times 1200 \times \frac{1}{3x^2}$	1	
$= \frac{40}{2}$ when $x = 5$ $\frac{dA}{dt} = 8$ cm ² /s	1	
$\frac{dx}{dt} = 5x \qquad t = 0 x = 1$ $\frac{dt}{dx} = \frac{1}{5x}$	1	
dx $dt = \int dx$ $\int t = \int \ln x + c$ $when t = 0 \ x = 1 \implies c = 0 Nore: \ln 1 = 0$ $\therefore t = \int \ln x$	+	,
$st = log_e x$ $x = e^{st}$	1	
(H) when t = 1 x = e ⁵	1	
$(u) \dot{x} = \frac{d}{dn} \frac{1}{2} v^2$	1	
$= \frac{d}{dx} \frac{25x^2}{2}$ $= 25x \qquad \text{when } x = 1 \ddot{x} = 25ms^{-2}$	1	

1		cademic Y	ear: 2011-12
Q	Solutions	Marks	Comments
Ø6	$\frac{dT}{dt} = k(T-20)$ $a) T = 20 + 4e^{kt} \implies 4e^{kt} = T-20$	1	
	$ \frac{dT}{dt} = k A e^{kt} \\ = k (T - 20) $		
	b) $T = 20 + 4e^{kt}$ when $t = 0$ $T = 80$ 80 = 20 + 4		
	A = 60	12	
	$T = 20 + 60e^{kt}$ $40 = 20 + 60e^{kt}$.6 -4	
·	20 = 60 ekt 1 = ekt +aking log of both sides	七	
	$ln\frac{1}{3} = kt$ When $t = 15$ $k = \frac{ln\frac{1}{3}}{15}$ Note: $ln\frac{1}{3} = ln1 - ln3$ $= -ln3$		
	$R = -\frac{\ln 3}{15}$ c) : $T = 20 + 60 e^{-\frac{\ln 3}{15}t}$]	
	When t=30 =2/n3	1	
	= 20 + 60 e/n q = /n q		
	$= 20 + 60.\frac{1}{9}$ $= \frac{80}{3}$ °C	1	