Trial Higher School Certificate Examination

2012

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using blue or black pen
- Begin each question in a new booklet
- · Write your student number on each booklet.
- · Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper. Detach.
- Multiple choice Answer sheet is at the back of this paper. Detach.
- Show all necessary working in Questions 11 - 16.
- Diagrams are not to scale.
- The mark allocated for each question is listed at the side of the question.

Total Marks - 100

Section I - Pages 2 - 4

10 marks

- Attempt Questions 1 10
- · Allow about 15 minutes for this section

Section II - Pages 5 - 12 90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

TABLE OF STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

Note $\ln x = \log_e x$, x > 0

© Board of Studies NSW

Section I - (10 marks)

Marks

Answer this section on the answer sheet provided at the back of this paper. Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

- 1. The angle which the straight line 3x + 5y + 2 = 0 makes with the positive direction of the x-axis is closest to:
 - A. 31°
- B. 59°
- C. 121°
- D. 149°
- Janet works out the sum of n terms of a given arithmetic series. Her answer, which is correct, could be:
 - $A_n S_n = 2(2^n 1)$
 - B. $S_n = 9 2n$
 - $S_n = 8n n^2$
 - $D \setminus S_n = 7 \times 2^{n-1}$
- The values of x for which $y = 2x^3 12x^2 + 18x + 7$ is increasing are:
- A. x < 2 B. x > 2 C. 1 < x < 3
- D. x < 1 or x > 3

4.

If $\triangle ABC$ has area 36 cm² then the area of $\triangle AXY$ is:

- 4 cm²
- $8 \, \mathrm{cm}^2$
- 12 cm^2
- D. 16 cm²
- When the curve of equation $y = e^x$ is rotated about the x-axis between x = -2 and x = 2 the volume of the solid generated is given by:
 - $A. \quad \pi \int_{-2}^{2} e^{x} dx$

B. $2\pi \int_0^2 e^{x^2} dx$

C. $\pi \int_{-2}^{2} e^{x^2} dx$

 $D. \quad \pi \int_{-2}^{2} e^{2x} dx$

Section I (cont'd)

Marks

The graph illustrated could be:

- B. $y = (-2)^x$
- C. $y = \left(\frac{1}{2}\right)^x$
- D. $y = \left(-\frac{1}{2}\right)^x$
- 7. The quadratic function, $Q(x) = 5x^{\frac{3}{2}} 4x + 3$, has roots for Q(x) = 0 of α and $\hat{\beta}$. Hence, $\alpha^2 + \beta^2 =$
- A. $\frac{46}{25}$ B. $\frac{29}{25}$ C. $\frac{-11}{25}$ D. $\frac{-14}{25}$
- 8. The graphs of $y = \sin x$ and $y = \tan x$ for $\frac{-\pi}{4} \le x \le \frac{\pi}{4}$ are represented in:

A.

В.

Section I (cont'd)

Marks

9. A possible answer to the size of $\angle C$ in the triangle below is:

140°27′

B. 0°10′

None of these answers

¹10.

The graph shows velocity expressed as a function of time. The distance travelled by the particle in the first 4 seconds is:

B. 10 units

C. $4\sqrt{5}$ units

D. 12 units

Section	II –	Show	all	working
---------	------	------	-----	---------

Se	ction II – Show all working		
Qu	estion 11 – Start A New Booklet – (15 marks)		Marks
a)	Write the answer to $\sqrt{\frac{4.83\times10.86}{17.83-5.92}}$ correct to 3 significant figure	es.	2
b)		Paranga	
c)	If $\log_a 2 = 0.36$ and $\log_a 5 = 0.83$ evaluate $\log_a \sqrt{10}$		2

Differentiate each of the following with respect to x

(i) $\cos 7x$

1

2

(iii) $x \ln x$

Find:

(i)
$$\int (3-2x)^4 dx$$

(ii)
$$\int \frac{1}{\sqrt{x}} dx$$

(iii)
$$\int \cos x^{\circ} \ dx$$

Question 12 - Start A New Booklet - (15 marks)

Marks

(B)

Graph the region on the number plane given by $y > \log_e(x-1)$

- . 2
- b) Copy this graph carefully onto your own paper. The graph shows y = f(x).

On your graph draw the graph of y = f'(x) making it clear which graph is your answer.

2

c) Initially a particle, travelling in straight line, is at rest at the origin. It is given an acceleration of (6t + 4) cm/sec².

3

Find the motion equation for displacement.

Marks

d)

A(0,7) and B(6,3) are points on the number plane and the equation of AB is 2x + 3y - 21 = 0

(i) Find the length of AB

1

(ii) Find the gradient of AB

1

2

1.

- (iii) Show that the equation of the perpendicular from D(-2,0) to AB is 3x 2y + 6 = 0
- (iv) Find the perpendicular distance from D to AB.
- (v) Find the coordinates of C such that ABCD is a parallelogram.
- (vi) Find the area of parallelogram *ABCD*.

Question 13 - Start A New Booklet - (15 marks)

Marks

3

3

- a) $20 + 10 + 5 + \cdots$ is a geometric series. Find which term of the series will be just less than 0.0001.
- b) If $\cos \theta = \frac{-8}{17}$ and $\tan \theta < 0$, find the exact value for $\sin \theta$.
- c) Sketch the graph of $y = -3 \sin 2x$ for $0 \le x \le 2\pi$
- d) Copy the table of values into your writing booklet and supply the missing numbers, for $f(x) = x \sin x$, writing each correct to 3 decimal places.

x	1	1.5	2	2.5	3
$f(x) = x \sin x$	0.841				

Use Simpson's Rule with 5 function values to find an approximation for

$$\int_{1}^{3} x \sin x \, dx$$

e) Find the volume formed when the area enclosed between $y = x^2$ and $y = 4x - x^2$ is rotated about the *x*-axis.

Question 14 - Start A New Booklet - (15 marks)

Marks

a)

A, B, C, D, E, F and G are the areas of the regions in which they are given.

Using these letters, write an expression for:

(i)
$$\int_{0}^{4} h(x) dx$$

(ii)
$$\int_{1}^{4} g(x) dx$$

1,2

3

(b) Solve
$$\tan 3\theta = 1$$
 for $0 \le \theta \le 2\pi$

c) Find the equation of the parabola with vertex (-1,1) and focus (-3,1)

d) (i) Differentiate

 $y = \log_e\left(\frac{x-1}{x+1}\right)$

(ii) Hence, or otherwise , find $\int \frac{1}{x^2-1} \ dx$

e) Given y = -4x - 20 is the equation of a tangent to $y = x^3 - 4x^2 - 7x + 10$ and x > 0, find the coordinates of the point of contact.

Question 14 - Start A New Booklet - (15 marks)

Marks

St George Girls High School Trial HSC Examination - Mathematics - 2012

Page 10

a)

A, B, C, D, E, F and G are the areas of the regions in which they are given.

Question 15 - Start A New Booklet - (15 marks)

Marks

2

a) Simplify:

$$\frac{\sin^2\theta}{\tan\theta\sin(90-\theta)}$$

b)

Copy the diagram carefully onto your paper.

X is a point on the side BC of $\triangle ABC$ and AX bisects $\angle BAC$.

(i) Draw the line through X parallel to BA to meet AC at L.

This construction gives
$$\frac{BX}{XC} = \frac{AL}{LC}$$

1

(ii) Prove that $\triangle ALX$ is isosceles.

2

2

(iii) Given that
$$\Delta CAB \parallel \mid \Delta CLX \mid$$
 (Do not prove this) prove that $\frac{BX}{XC} = \frac{AB}{AC}$

The equation of motion of a particle is $x = te^{-t}$

where x is in centimetres t is in seconds.

(i) Find the time when the particle is at rest.

3

(ii) Find the equation of motion for acceleration and the acceleration when v=0.

.2

(iii) Find the time when acceleration is zero.

1

(iv) Using the answers from parts (i) to (iii) and other necessary information, sketch the displacement-time function $x=te^{-t}$. Show all important features clearly.

2

Question 16 - Start A New Booklet - (15 marks)

Mark

2

a) An open cone, of radius r cm, and height, h cm is made from a sector of a circle. The area of the sector used is 300 cm².

Show from Figure I that slant height l is given by $l^2 = \frac{450}{\pi}$

(ii) Show from Figure II that $h = \sqrt{l^2 - r^2}$

(iii) Hence or otherwise show that the volume of the cone is given by

$$V = \frac{1}{3}r^2\sqrt{450\pi - \pi^2 r^2}$$

((iv)) Show that
$$\frac{dv}{dr} = \frac{300\pi r - \pi^2 r^3}{\sqrt{450\pi - \pi^2 r^2}}$$

Find the value of r for the volume of the cone to be a maximum.

Question	16 - ((cont'd)
£		

Marks

1

1

3

- b) Kando, the mathematical kangaroo always hops (i.e. jumps) according to mathematical rules. One day, Kando decides to go hopping according to the following rules:
 - The length of odd number hops (1st, 3rd, 5th hop etc), in metres, is given by the arithmetic series $t_n = 4 (n 1)$, where n = 1, 3, 5, ... is an odd number;
 - The length of even number hops (2nd, 4th, 6th hop etc), in metres, is given by the geometric series $T_N = \frac{192}{63} \left(\frac{1}{2}\right)^{\frac{N-2}{2}}$, where N=2,4,6,... is an even number;
 - If the length of a hop is negative according to the relevant series, Kando hops the prescribed distance *backwards*.
 - (i) Write down the first term and common difference for the series t_n .
 - (ii) Write down the first term and common ratio for the series T_n .
 - (iii) Find where Kando is relative to her starting point after 12 hops.
 - (iv) Find the total distance travelled backwards in the first 16 hops.

ST GEORGE Mathematics Trial		Question 12	(c) t=0 v=0 x=0 :.c=0 a=6++4 +=fl+++dt
Multiple Choice 1. D b. C 2. C 7. D 3. D 8. C 4. A 9. A 5. D 10. B Vestion II 3 4.83×10.86 17.83-5.92 = 2.0986	(iii) $y = x \ln x$ $y' = 1 \cdot \ln x + x \cdot \frac{1}{x}$ $= \ln x + 1$ (e) $(1) \int \frac{1}{3} = 2x \cdot \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = 2x \cdot \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = 2x \cdot \frac{1}{3} = \frac{1}{3}$	(a) 3 1 1 1 1 2 3 X	$y = \int \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}$
	$= \frac{\chi^{2}}{2} + C$ $= 2\sqrt{\chi} + C$ $= 2\sqrt{\chi} + C$ $= 2\sqrt{\chi} + C$ $= \frac{1}{2} + C$	y=1(0)	(iii) $M = \frac{3}{2} (-2,0)$ $y = 0 = \frac{3}{2} (x + 2)$ 2y = 3x + 6 3x - 2y + 6 = 0 (iv) $d = 2x, +3y, -21$ $2^{2} + 3^{2}$ = 2, -2 + 3, 0 - 21
$= \frac{1}{2}(0.83 + 0.36)$ $= 0.595$ $y = 0.595$ $y' = -7.5 - 7.26$ $(ii) $		70	$= 25$ $\sqrt{13}$ (V) $C = (4 - 4)$ $= \sqrt{52} \times \frac{25}{\sqrt{13}}$ $= \sqrt{4} \times 25$ $= 50 \text{ sq. units.}$

	11
	$a = \frac{192}{63} c = \frac{1}{2} S_n = \frac{a(i-r^n)}{63}$
Juestivin 16.	
T ($S_6 = \frac{192 \cdot (1 - \frac{1}{2})}{\frac{63}{2}}$
$\frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n}$	6 23
1=4 : a=4	2
$\uparrow = 2$ $d = -2$	$= 192 \cdot (1-26)$
$\int_{3}^{2} = 0$	63
W-2	
$ i = \frac{192}{63} \left(\frac{1}{2}\right)^{\frac{N-2}{2}}$	$=\frac{384\left(1-\frac{1}{64}\right)}{63}$
$T = \frac{692}{63} \left(\frac{1}{2}\right)^{\circ}$	= 384 · 63
<u>192</u> 63	= 384
	= 384 64 = 6.
$T_2 = \frac{192}{63} \left(\frac{1}{2}\right)^4$	6···
	5n+SN
$=\frac{192}{63},\frac{1}{2}$	= -6 +6
	- n
$T_{3} = \frac{192 \cdot \left(\frac{1}{2}\right)^{\frac{1}{2}}}{63}$	
1 63	- Kando is at the starting point.
$a = \frac{192}{63}$ $r = \frac{1}{2}$	
63	(iv) Total distance backwards.
	is -2 -4 - 6 -8 -10 = -30
i) S + 5N n=6 N=6	
2=4 d=-2	
56 - 6 (2×4+5×-2)	
1 2 :	·
= 3 (8-10)	
= -6	
Marie Ma	1

·