St George Girls High School

Year 11

End of Preliminary Course Examination

2006

Mathematics Extension 1

Time Allowed: 2 hours (plus 5 minutes reading time)

Instructions

- 1. Attempt all 6 questions.
- 2. All necessary working must be shown.
- 3. Begin each question on a new page.
- 4. Marks will be deducted for careless work or poorly presented solutions.

St George Girls High School Year 11 - End of Preliminary Course Examination - Mathematics Extension 1-2006 Page 2 Question 1 (14 marks) - Start a New Page Mark a) Find the values of a, b and c if $2x^2 + x + 4 = a(x+1)^2 + b(x+1) + c$ b) Find the co-ordinates of the point C which divides the join of A(-3, -2) to B(1, 4) externally in the ratio 1:3. In what ratio does B divide CA? c) Find the domain of $f(x) = \sqrt{\frac{3-x}{x}}$ 3

e) Find $\frac{dy}{dx}$ in simplest factored form if $y = (2x-1)^3(3x+1)^2$

Question 2 (14 marks) - Start a New Page

Marks

3

- a) Solve for x:
 - $\log_2 x + \log_2 (x-2) = 3$
- b) Solve for θ where $0^{\circ} \le \theta \le 360^{\circ}$
 - (i) $\cos(\theta + 60^\circ) = \frac{1}{2}$
 - (ii) $2\sin^2\theta \sin\theta 1 = 0$
- c) The rate at which the world's pollution, P, is changing over time t (years) was reported by three scientists.

Their results were

$$1. \quad \frac{dP}{dt} = 0.6$$

$$2. \qquad \frac{dP}{dt} = \frac{1}{t} \qquad (t > 0)$$

3.
$$\frac{dP}{dt} = -0.1$$

Discuss the meaning of each of the above.

d) If $y = \frac{x}{\sqrt{1-x^2}}$ find $\frac{dy}{dx}$ in the form $(1-x^2)^n$ where *n* is a rational number.

Question 3 (14 marks) - Start a New Page

Marks

1

1

a)

A ball is thrown from A at the top of a cliff. This ball follows the path of the parabola $y = 60 + 20x - 5x^2$ (as shown above) to the ground at D. The line AB is tangential to the parabola at A and makes an angle α with the horizontal line AC. [Note: All measurements are in metres].

- (i) How high is the cliff?
- (ii) Find the value of $\frac{dy}{dx}$ at A.
- (iii) Find α correct to the nearest degree.
- (iv) Find the maximum height reached by the ball above ground level.
- (v) Find the distance OD where O is the origin and D is on the same horizontal level as O.
- b) Consider the series $20 + 10 + 5 + \dots$
 - (i) Find the sum of the first n terms, S_{n} , in simplest form.
 - (ii) Find the limiting sum, S, of the series.
 - (iii) Find the least integer n for which $S S_n < 0.001$

.

3

Page 5

Ouestion 4 (14 marks) - Start a New Page

Marks

- a) Prove by Mathematical Induction that $3^{2n}-1$ is divisible by 8 for all integers $n \ge 1$
- b) Consider the function $f(x) = \frac{4-x^2}{1-x^2}$
 - (i) Evaluate f(0)
 - (ii) Solve for x: f(x) = 0
 - (iii) State the equations of the vertical asymptotes.
 - (iv) Find the equation of the horizontal asymptote.
 - (v) Determine whether f(x) is an even function, an odd function or neither.
 - (vi) Sketch y = f(x) clearly showing all of the above features.
 - (vii) Evaluate f'(2)
 - (viii) Find the equation of the tangent to y = f(x) at (2,0)

-

1

1

1

1

1

2

2

1

St George Girls High School
Year 11 – End of Preliminary Course Examination – Mathematics Extension 1–2006

Page 6

Question 5 (14 marks) - Start a New Page

Marks

2

- a) Show that the roots of $x^2 + (k-1)x 1 = 0$ are real and distinct for all values of k where k is a real number.
 - Consider the function $f(x) = \begin{cases} 2x & \text{for } 0 \le x \le 2 \\ 4x^2 + b & \text{for } x > 2 \end{cases}$

Find the values of 'a' and 'b' if f(x) is both continuous and differentiable at x=2

c)

A line is drawn through the point (0,-1) with gradient m.

- (i) Show that the equation of this line is mx y 1 = 0
- (ii) If this line is tangential to $y = x^2$ as above, find the value of m given that m is positive.

Marks

d)

A load of sand at S is to be distributed equally, along a straight line, to twenty positions A, B, C, \mathbf{D} ... which are separated by 5m. A is 20m from S.

The worker starts at S and returns to S after delivering to <u>each</u> position. Find:

- the distance travelled from S to the 20^{th} position and then returning to S. 2
- the total distance travelled completing this task. · 2

St George Girls High School

Year 11 - End of Preliminary Course Examination - Mathematics Extension 1-2006

Page 8

Ouestion 6 (14 marks) – Start a New Page

Marks

Consider the function $f(x) = (x-2)^2$ for $x \ge 2$

State the range of f(x)

 $\overline{1}$

(ii) Find $f^{-1}(x)$ clearly indicating the domain and range.

3

b)

Water is entering this container at the rate of $\frac{\pi}{10}$ metres³/hour.

When the depth of the water is hm the volume of water is $V = \frac{4}{3}\pi h^3$ metres³.

At what rate is the depth increasing (correct to 2 significant figures) when the depth is 0.4m?

Question 6 (cont'd)

Marks

c)

The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two variable points on the parabola $x^2 = 4ay$. M is the mid-point of PQ.

(i) Find the gradient of PQ.

1

(ii) Show that the equation of PQ is $y - \frac{1}{2}(p+q)x + apq = 0$

1

- (iii) If PQ always passes through (0,2a)
 - a. Show that pq = -2

1

b. Show that the locus of M as P and Q vary is the parabola $x^2 = 2a(y-2a)$

3

(e)
$$y = (2x-1)^3 (3x+1)^2$$

$$\frac{dy}{dx} = Vu' + uV'$$

$$= (3z+i)^{2} \cdot 3(2z-i)^{2} \cdot 2 + (2z-i)^{3} \cdot 2(3z+i) \cdot 3$$

$$= 6(3z+i)^{2}(2z-i)^{2} + 6(2z-i)^{3}(3z+i)$$

$$= 6(3z+i)(2z-i)^{2} \left[3z+i + 2z-i\right]$$

$$= 30z(3z+i)(2z-i)^{2}$$

OUESTION 2

(a)
$$\log_2 x + \log_2(x-2) = 3$$
 But $x > 0 \notin x - 2 > 0$

$$\Rightarrow \log_2[x(x-2)] = 3$$

$$\Rightarrow x^2 - 2x = 8$$

$$x - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$x = 4, -2$$

$$(6 + 60)^{\circ}$$
 = 60°

$$\sin \theta = 1$$
 $\sin \theta = -\frac{1}{2}$ $\theta = \frac{1}{2}$ $\theta = \frac{1}{2}$ $\theta = \frac{1}{2}$ $\theta = \frac{1}{2}$ $\theta = \frac{1}{2}$

(c) (i) ! Pollution is increasing at a constant +a 2. Pollution is increasing but at a decreasing , 3. Pollution is decreasing at a constant wat

$$\frac{\partial x}{\partial x} = \frac{x}{(1-x^2)^{\frac{1}{2}}}$$

$$\frac{\partial x}{\partial x} = \frac{(-x^2)^{\frac{1}{2}} \cdot 1 - x \cdot \frac{1}{x^2} \cdot (1-x^2)^{\frac{1}{2}} \cdot (2xx)}{(1-x^2)^{\frac{1}{2}}}$$

$$= \frac{(1-x^2)^{\frac{1}{2}} + \frac{x^2}{(1-x^2)^{\frac{1}{2}}}}{(1-x^2)^{\frac{1}{2}}}$$

$$= (1-x^2)^{\frac{1}{2}} + \frac{x^2}{(1-x^2)^{\frac{1}{2}}}$$

$$= (1-x^2)^{\frac{1}{2}} + \frac{x^2}{(1-x^2)^{\frac{1}{2}}}$$

26ESTON 3:

(a) (i)
$$y = 60 + 20x - 5x^{2}$$

at $x = 0$, $y = 60$
: Cliff is 60 m high

(ii)
$$\frac{dy}{dx} = 20 - 10x$$

at x = 0, $\frac{dy}{dx} = 20$

(iv)
$$y = 60 + 20x - 5x^{2}$$

 $= -5(x^{2} - 4x - 12)$
 $= -5[(x^{2} - 4x + 4) - 16]$
 $= 80 - 5(x - 2)^{2}$

: Maximum height is 80 m

(v) when
$$y = 0$$
, $80 - 5(x-2)^2 = 0$

$$80 = 5(x-2)^2$$

$$/6 = (x-2)^2$$

$$x - 2 = 4, -4$$

$$\therefore x = 6, -2$$

$$\therefore x = 6 \quad (x>0)$$

: 00 is 6m

Geometric series
$$a = 20, + = \frac{1}{2}$$

(i)
$$S_N = \frac{(1-t^N)}{1-t}$$

 $= \frac{20[1-(t)^N]}{1-t}$
 $= \frac{40[1-(t)^N]}{1-t}$
 $= \frac{a}{1-t}$
 $= \frac{20}{1-t}$

$$\begin{array}{rcl}
(ii) & 5 & = & \frac{a}{1-r} \\
 & = & \frac{20}{1-\frac{r}{2}} \\
 & = & 40
\end{array}$$

(iii)
$$S - S_{N} < 0.00/$$
 $\Rightarrow 40 - 40(1 - (4)^{N})^{7} < 0.00/$
 $\therefore 40(\frac{1}{2})^{N} < 0.00/$
 $(\frac{1}{2})^{N} < \frac{0.00/}{40}$
 $\Rightarrow \log_{10}(\frac{1}{2})^{N} < \log_{10}(\frac{0.00/}{40})$
 $\Rightarrow \log_{10}(\frac{1}{2})^{N} < \log_{10}(\frac{0.00/}{40})$
 $\Rightarrow \log_{10}(\frac{1}{2})^{N} < \log_{10}(\frac{0.00/}{40})$
 $\Rightarrow \log_{10}(\frac{1}{2})^{N} < \log_{10}(\frac{0.00/}{40})$
 $\Rightarrow \log_{10}(\frac{1}{2})^{N} < \log_{10}(\frac$

: n = 16

QUESTION 4:

(a) Let S(n) be the assertion that 3^{-1} is divisible by 8Then $S(1): 3^{2}-1=8$ which is divisible by 8

-: 5(1) is time

assume 5(k) is some for some integer k > 1in $3^{2k} - 1 = 8N$ Ninteger — ①

We now aim to prove that 5(k+1) is true in $3^{2(k+1)}-1$ is divisible by of

how $3^{2(k+1)} - 1 = 3^{2k+2} - 1$ $= 3^2 \cdot 3^{2k} - 1$ $= 3^2 \cdot (8N + 1) - 1$ from 0 = 72N + 8 $= 8 \cdot (9N + 1)$ = 8M M integer

.. If 5(k) is time them 5(k+1) is time But 5(1) is time, hence 5(2) is time and by the principle of maxhematical induction 5(n) is time for all integers n > 1

$$f(x) = \frac{4-x}{1-x}$$

$$(i) \quad f(0) = 4$$

$$(ii) \quad f(x) = 0 \implies \frac{4-x^2}{1-x^2} = 0$$

$$\therefore 4-x^2 = 0$$

(iii) Vertical asymptotes are
$$x = 1$$
, $x = -1$

(i)
$$\lim_{x \to \pm \infty} \frac{4-x}{1-x} = \lim_{x \to \pm \infty} \frac{4+x}{x} - 1$$

-- y = 1 is horizontal asymptote

$$f(-x) = \frac{4 - (-x)^{2}}{1 - (-x)^{2}}$$

$$= \frac{4 - x^{2}}{1 - x^{2}}$$

$$= f(x)$$

: f(x) is an EVEN function

$$f(x) = \frac{4-x^{2}}{1-x^{2}}$$

$$f'(x) = \frac{(1-x^{2})(-2x) - (4-x^{2})(-2x)}{(1-x^{2})^{2}}$$

$$= \frac{-2x + 2x^{2} + 8x - 2x^{2}}{(1-x^{2})^{2}}$$

$$= \frac{6x}{(1-x^{2})^{2}}$$

$$= \frac{6}{(1-x^{2})^{2}}$$

$$= \frac{4}{9}$$

(viii) Jangant at
$$(2,0)$$
 is $y-0=\frac{4}{3}(x-2)$ $3y=4x-8$ is $4x-3y-8=0$

QUESTION 5 :

(a)
$$x^2 + (k-1)x - (1-0)$$

$$\Delta = 4^2 - 4ac$$

$$= (k-1)^2 - 4(1)(-1)$$

$$= (k-1)^2 + 4$$

since A is sum of 2 squares them A > 0 for all R.

in Roots must be real and distinct

(b) CONTINUOUS at x = 2

(ii)
$$\lim_{x \to 2^{-}} f(x) = 4$$

 $\lim_{x \to 2^{+}} f(x) = 4a + 6$

DIFFERENTIABLE at x = 2

$$\lim_{x\to a^{+}} f(x) = \lim_{x\to a^{+}} 2ax$$

$$= 4a$$

ie mx-y-1=0

(ii)
$$mx - y - 1 = 0 \quad -0$$

$$y = \tilde{x} \quad -0$$

sub
$$y = x \text{ in } \bigcirc$$

 $\Rightarrow mx - x' - 1 = 0$
 $\Rightarrow x' - mx + 1 = 0$

$$\Delta = \beta' - 4ac$$
= $(-m)' - 4(1)(1)$
= $m' - 4$

(i)
$$T_{20} = a + 19R$$

= $40 + 19(10)$
= 230

-: Zravel 230 m

(ii)
$$S_{20} = \frac{20}{2}(a+l)$$

= $10(40 + 230)$
= 2700

QUESTION 6!

$$(x) \qquad f(x) = (x-2)^{2} \qquad x \ge 2$$

(ii)
$$f: y = (x-2)^{2}$$

$$\begin{cases} x \ge 2 \\ y \ge 0 \end{cases}$$

$$f': x = (y-2)^{T}$$

$$\therefore y-2 = \pm \sqrt{x}$$

$$y = 2 \pm \sqrt{x}$$

$$y \ge 2$$

$$y \ge 2$$

since
$$y \ge 2$$
 then
$$y = 2 + \sqrt{x}$$
ie $f'(x) = 2 + \sqrt{x}$ domain: $x \ge 0$

Range: 422

(b)
$$\frac{dV}{dk} = \frac{\pi}{10} \text{ metres}^3 / \text{Rowr}$$

$$V = \frac{4}{3} \pi k^3$$

$$\frac{dV}{dk} = 4\pi k^7$$

$$\frac{dR}{dk} = \frac{dR}{dV} \cdot \frac{dV}{dk}$$

$$= \frac{1}{4\pi k^7} \cdot \frac{\pi}{10} \text{ m/Rr}$$

$$= \frac{1}{40R} \text{ m/R}$$

$$R = \frac{2}{5} \implies \frac{dk}{dt} = \frac{1}{40.\binom{4}{15}}$$
= 0.15625
= 0.16 (correct to 2 sig. figs)
-: Increasing at 0.16 m/R1

(i)
$$m_{pa} = \frac{\alpha p - \alpha q}{2\alpha p - 2\alpha q}$$

$$= \frac{\alpha (p + q)(p - q)}{2\alpha (p - q)}$$

$$= \frac{p + q}{2} \qquad p \neq q$$

(ii) Equation of PQ:

$$y - \alpha p' = \left(\frac{p+p}{x}\right)(x-2\alpha p)$$

$$ie 2y - 2\alpha p' = (p+p)x - 2\alpha p' - 2\alpha pq$$

$$ie 2y = (p+q)x - 2\alpha pq$$

$$(iii)(a)(0,2a) \Rightarrow 2a - 0 + apq = 0$$

 $= apq = -2a$
 $= -2a$

(6)
$$M = (a(p+2), \frac{a}{a}(p^2+2^2))$$

is $x = a(p+2)$ — O
 $y = \frac{a}{a}(p^2+2^2)$
 $= \frac{a}{a}(p+2^2)^2 - 2pq$
 $= \frac{a}{a}(\frac{x}{a}^2 + 4^2)$ and from O
 $= \frac{a}{a}(\frac{x}{a}^2 + 4^2)$
 $= \frac{x}{a} + 2qa$

ie
$$2ay = x^2 + 4a^2$$

ie $x^2 = 2ay - 4a^2$
 $= 2a(y-2a)$