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Question 1 (15 marks) — Start a New Page

a) Find the derivatives of:
(@ y=3%
(i) y=x(x-3)

2
+2
(i) y="—~
X

b) For the function y=
) x+2

(i) Show that the derivative is given by 3
(x+2)

(i) Find the equation of the tangent to the curve at the point (-1,-1)

¢) Find the values of x on the curve y = (x2 + 1)(x+3)2 where the tangents to the
curve are horizontal.

d) For the function

2
f(x)={4—x x<l1

x+2 x>1
(i) Evaluate f(1)+ f(2)

f(ﬁii‘() Give reasons to justify the statement “ f(x) is continuous at the point where
x=1"
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a)

Question 2 (15 marks) — Start a New Page
Solve x- i =1
x

b) If a and f are the roots of the quadratic equation 2x? —6x+1=0, write down

d)

the values of:
i) a+p
(iiy of

(i) a?+ p°

1
s

1
(iv) — +
o2

A ball is thrown vertically upwards and its height (%) in metres at time (¢) seconds
isgivenby h=5+141—1>

Cer} Express /4 in the form A—(¢+ B)2

(ii) Hence or otherwise find the greatest height reached by the ball and the time
when this occurs.

For the quadratic equation 4x% = 2kx+k—-1=0

(i) Show that the discriminant (A) is equal to 4(k - 2)2 .

—

(11/) Explain why the roots of the quadratic equation must be rational if £ is rational.
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Question 3 (15 marks) — Start a New Page Marks
a) Find the centre and radius of the circle x% +10x+ y2 -6y+30=0 3
b) Find in general form the equation of the locus of point P (x, y) which moves so

that it is equidistant from the points A(-2,3) and B(4, 7). 3
¢) For the parabola y2 =—-8x 3

(i) Find the coordinates of the vertex and the focus.

(i) Find the equation of the directrix.
d) Forthe curve y= x* +4x% -3 find the coordinates of any stationary points and

6

determine what type of stationary points they are.
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Question 4 (15 marks) — Start a New Page

a) Show that the quadratic given by f(x)= x> —2x+3 is positive definite.

b) Solve 2(2%¥)-9(2%¥)+4=0

¢) Find the values of the constants a, b and ¢ such that

x? +6x—5Eax(x+1)+b(x-l—1)2 +ecx

Page 5
Marks
3
3
3

d) (i) Show that the equation of the normal to the parabola x? =8 y at the point

(~4,2) is y=x+6.

6

(ii) This normal meets the parabola again at the point Q. Find the coordinates of Q.
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Question 5 (15 marks) — Start a New Page

a)

b)

d)

Differentiate

(i) xvx

Gi) (2x-5)°

By solving the equations simultaneously show that the line x+2y-4=0 isa

tangent to the hyperbola xy=2.

Find the values of x for which the curve y = x> —12x is decreasing.

The curve y=x + bx® +cx+d has a maximum turning point at (-1, 0)
and a minimum turning point when x=2.

(i) Explainwhy b-c+d=1

(ii) Showthat 2b-c=3 andthat 4b+c=-12

(iii) Hence find the equation of the curve.

End of Paper
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