Year 11 - Higher School Certificate Course

Assessment Task 1

December 2004

Mathematics

General Instructions

- Reading time 5 minutes.
- Working time 75 minutes.
- Write using black or blue pen.
- Attempt all questions.
- Start each question on a new page.
- Show ALL working.
- Marks for each question are shown in right column
- Complete cover sheet clearly showing
 - your name
 - mathematics class and teacher

Question 1 (15 marks) – Start a New Page

Marks

a) Find the derivatives of:

3

- (i) $y = 3x^5$
- (ii) $y = x^3(x-3)$
- (iii) $y = \frac{x^2 + 2x}{x^2}$
- b) For the function $y = \frac{x}{x+2}$

4

- (i) Show that the derivative is given by $\frac{2}{(x+2)^2}$
- (ii) Find the equation of the tangent to the curve at the point (-1, -1)
- c) Find the values of x on the curve $y = (x^2 + 1)(x + 3)^2$ where the tangents to the curve are horizontal.

4

d) For the function

$$f(x) = \begin{cases} 4 - x^2, & x \le 1 \\ x + 2, & x > 1 \end{cases}$$

- (i) Evaluate f(1) + f(2)
- Give reasons to justify the statement "f(x) is continuous at the point where x = 1"

Question 2 (15 marks) – Start a New Page

Marks

a) Solve $x - \frac{6}{x} = 1$

2

b) If α and β are the roots of the quadratic equation $2x^2 - 6x + 1 = 0$, write down the values of:

6

- (i) $\alpha + \beta$
- (ii) $\alpha\beta$
- (iii) $\alpha^2 + \beta^2$
- (iv) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$
- A ball is thrown vertically upwards and its height (h) in metres at time (t) seconds is given by $h = 5 + 14t t^2$

4

- (i) Express h in the form $A (t + B)^2$
 - (ii) Hence or otherwise find the greatest height reached by the ball and the time when this occurs.
- d) For the quadratic equation $4x^2 2kx + k 1 = 0$

- (i) Show that the discriminant (Δ) is equal to $4(k-2)^2$.
- (ii) Explain why the roots of the quadratic equation must be rational if k is rational.

Question 3 (15 marks) - Start a New Page

Marks

a) Find the centre and radius of the circle $x^2 + 10x + y^2 - 6y + 30 = 0$

- 3
- b) Find in general form the equation of the locus of point P(x, y) which moves so that it is equidistant from the points A(-2, 3) and B(4, 7).
- c) For the parabola $y^2 = -8x$

3

- (i) Find the coordinates of the vertex and the focus.
- (ii) Find the equation of the directrix.
- d) For the curve $y = x^4 + 4x^3 3$ find the coordinates of any stationary points and determine what type of stationary points they are. 6

Question 4 (15 marks) – Start a New Page

Marks

a) Show that the quadratic given by $f(x) = x^2 - 2x + 3$ is positive definite.

3

b) Solve $2(2^{2x}) - 9(2^x) + 4 = 0$

3

c) Find the values of the constants a, b and c such that

$$x^{2} + 6x - 5 \equiv ax(x+1) + b(x+1)^{2} + cx$$

- d) (i) Show that the equation of the normal to the parabola $x^2 = 8y$ at the point (-4, 2) is y = x + 6.
 - (ii) This normal meets the parabola again at the point Q. Find the coordinates of Q.

Question 5 (15 marks) – Start a New Page

Marks

a) Differentiate

2

- (i) $x\sqrt{x}$
- (ii) $(2x-5)^3$
- b) By solving the equations simultaneously show that the line x + 2y 4 = 0 is a tangent to the hyperbola xy = 2.
- c) Find the values of x for which the curve $y = x^3 12x$ is decreasing.
- d) The curve $y = x^3 + bx^2 + cx + d$ has a maximum turning point at (-1, 0) and a minimum turning point when x = 2.
 - (i) Explain why b-c+d=1
 - (ii) Show that 2b-c=3 and that 4b+c=-12
 - (iii) Hence find the equation of the curve.

Year 11 Mathematics (20) Assessment Task #1 December 2004 SULUTIONS & MARKING SCALE a)(1) dy = d 3 x MARKS = 15 x . (ii) $\frac{d}{dx}$ $\left(x^{3}(x-3)\right)$ $= \frac{d}{dx} (x^4 - 3x^2)$ $= 4x^3 - 6x$ (iii) $\frac{d}{dx} \left(\frac{x^2 + 2x}{x^2} \right)$ = d (1 + 22 1) $= -2x^{-2}$. $(i) y = \frac{x}{x+2}$ $\frac{dy}{dx} = \frac{(x+2) \cdot 1 - x(1)}{(x+2)^2} \left(\frac{q \cot t \cdot ent}{(x+2)^2} \right)$ $= \frac{2}{(x+2)^2}$ (ii) at z = -1, dy = 2, y = -1egn of tangent: y+1=2(31+1) y=21+1

Squaring both sides gives'

$$2 + 4 > 1 + 4 + 4 + 4 - 6 + 9 - 2 - 8 > 1 + 16 + 4 - 14 + 49$$
12 12 x + 8 y - 5 2 = 0

4 > 2 3 > 1 + 2 y - 13 = 0

(3)

(1)

(1)

(3)

$$y''' = 2$$
-'. $vertex:(0,0)$

focus $(-2,0)$ (1)

(ii) Directrix:
$$x = 2$$

a)
$$y = x^{4} + 4x^{3} - 3$$

$$y = 4x^{3} + 12x^{2}$$

$$= 4x^{2}(x + 3)$$

$$= 51. pts ot (0, -3) and (-3, -30)$$

$$y'' = 12x^2 + 24x = 12x(x+2)$$

where $x = 0$, $y'' = 0$ in conclusive

horizontal point of inflection at (0,-3)

. Showing y" changes sign at >1=0) Note ACCEPT

at x = -3 4" = 36 70. min. turning point

Equation of normal is y-2=1(x+4)

y= set 6 and 2 = 8 y smultanearly $x^{2} = 8(x+6)$ $x^{2} - 8x - 48 = 0$ (x - 12)(x + 4) = 01.7 = -4, 12.ad a, x=12, y=18 y Q (12,18) a) (i) of x soc $= \frac{d}{d} \lambda^{3/2}$ $=\frac{3}{2}x^{\frac{1}{2}}\approx\frac{3\sqrt{x}}{2}$ (ii) $\frac{d}{dx} (2x-5)^3 = 3(2x-5)^2 \cdot 2$ = $6(2x-5)^2$ (1)x+2y-4=0. > x=4-2y $\Rightarrow (4-2y)y = 2$ 8 $4y-2y^2=2$ $y^2-2y+1=0$ y=0. Since only one distinct root for y, f hence x, x+2y-4=0is tangential to xy=2. (3) c) $y = x^3 - 12x$ $\frac{1}{3} \cdot y' = 3x^2 - 12$ $y' \neq 0 \implies 3(x^2 - 4) < 0$ (4)

-, -2<x<2, 20 gives

d)
$$y = \chi^3 + b\chi^2 + c\chi + d$$
.
(i) Sub in $(-1,0)$ since pt. lies on curve.
 $\Rightarrow 0 = -1 + b - c + d$

(ii)
$$y' = 3x^2 + 2bx + c$$
.
when $x = -1$, $y' = 0$ ($st. pt. ax(-1,0)$)
 $\Rightarrow 0 = 3 - 2b + c$.
 $= 2b - c = 3$

when
$$x=2$$
, $y'=0$ (st. pt at $n=2$)
 $\Rightarrow 0=12+445+c$.
 $\therefore 46+c=-12$

(iii)
$$b-c+d=1$$
 0
 $2b-c=3$ (5)
 $4b+c=-12$ (3)

(6)

$$y = 2x^{3} - 3/2 x^{2} - 6 x - 3 \frac{1}{2}$$