St George Girls High School

Year 11

Common Test 2

June 2004

Mathematics Extension 1

Time Allowed: 75 minutes

Instructions

- 1. All questions are of equal value.
- 2. Attempt all questions.
- 3. All questions are to be completed in the answer booklet.
- 4. Start each question on a new page.

Question 1 – 15 marks – (Start a new page)

Marks

- a) Solve for $0^{\circ} \le x \le 360^{\circ}$:
 - (i) $\sin 2x = \frac{-\sqrt{3}}{2}$

2

(ii) $\sin x + \cos x = 0$

2

b) Find the equation of the line through (-1, 2) and making an angle of 150° with the positive x-axis

2

c) Solve this equation:

$$\log_2 x = \log_2 16 + \log_4 32$$

2

d) (i) Determine what type of sequence is: log3, log9, log27, log81..... (show all working)

1

(ii) Find an expression for T_n , the *nth* term of the above sequence. Hence find:

1

(iii) the eighth term.

1

(iv) the eighth partial sum of the progression.

1

e) The length of a newly hatched python is 24cm. It increases in length by 9cm during its first year. In each succeeding year, its increase in length is $\frac{2}{3}$ of that in the previous year. What is the greatest length that this python could expect to reach?

Question 2 – 15 marks – (Start a new page)

Marks

3

3

2

1

3

- a) Evaluate $\sum_{r=1}^{10} 3(\frac{1}{2})^r$ correct to 3 decimal places (without calculating the individual terms).
- b) Insert three geometric means between 16 and $\frac{81}{16}$.
- (c) Simplify $\frac{3^{2-n} \times 6^{2n}}{12^{n-2}}$
- (d) (i) Write down:
 - (α) the centre
 - and (β) the radius of the circle $(x-2)^2 + (y+1)^2 = 25$
 - (ii) Find the distance from the line y = 2x + 3 to the centre of the above circle. (Give exact answer).
 - (iii) Hence, find the length of the chord cut off from the line by the circle. (Give answer correct to 2 significant figures).

Question 3 – 15 marks – (Start a new page)

Marks

2

4

3

- a) The sides of a triangle are in the ratio 2:4:5. Find the largest angle of the triangle, correct to the nearest minute.
- b) Find the equation of the line (in general form) passing through the point of intersection of x-2y+1=0 and 2x+3y-1=0, having a slope of 2. (Do <u>not</u> find the point of intersection of the two given lines).
- c) A is the point (-2, 1) and B is the point (x, y). The point P(13, -9) divides AB externally in the ratio 5:3. Find the values of x and y.
- d) The sum of the first three terms of a geometric series is 4, and the sum of the next three terms is 32. Find the first term, a, and the common ratio, r, of the progression.
- e) Solve for $\theta \left(0^{\circ} \le \theta \le 360^{\circ}\right)$:

3

3

$$6\cos^2\theta + \sin\theta - 4 = 0$$

(Give answers correct to the nearest minute).

Question 4 - 15 marks – (Start a new page)

Marks

a) The vertical angle of an isosceles triangle is 30°, and its area is 40cm². Find the length of the equal sides. (Give the exact answer, in simplified form).

b) Prove the following identity:

$$\frac{1+\cos A}{1-\cos A} \equiv (\csc A + \cot A)^2$$

c) Two roads diverge from an intersection, X, at an angle of 132°. At the same time, two cars leave the intersection – one along each road. The cars are travelling at 30km/h and 40km/h. How far apart are they after 2 hours? (Give the answer to the nearest kilometre).

3

- d) If $x = \log_m 2$, $y = \log_m 3$ and $z = \log_m 5$, express $\log_m \frac{25}{54m}$ in terms of x, y and z. 2
- e) Using the principle of mathematical induction, prove (for all positive integral values of n) that $5^n 1$ is divisible by 4.

Prelininary Solutions Common Test 2 Extension 1

Question 1 2x = 240,300,600,660 x = 120,150,300,330(ii) Sin x + Cos x = 0fortoxel x = 135, 315° 1 (b) If the # 3 95 153?

m = tan 0 225?

m = tan 150 $M = -\frac{1}{\sqrt{3}} \left(-\frac{1}{2}\right) \frac{1}{2}$ y-y = m(x-x,)(2) -9-1 = -1 (x+1) 54 -253 = -x -1 x+53y-253++=0 / (c) log x = log 16 + log 432 log x = log 24 + log 32 $\log x = 4 \log_2 2 + \frac{5 \log_2 2}{2 \log_2 2}$ $\log x = 4 + \frac{5}{2} \cos^2 x$

(a) (i) $\sin 2x = -\sqrt{3}$ | $\cos x = -\sqrt{3}$ | $\cos x$ (i) AP | a = log 3 d = log 3 $(ii) T_n = a + (n-i)d$ $\sin x = -\cos x$ $\sin x = -\cos x$ $\sin x = -1$ $\cos x$ $\tan x = -1$ $\tan x = -1$ (iii) T₈ = log 38 = (19656) (iv) $5_8 = \frac{8}{2} (\log 3 + \log 3^8)$ $= 4(\log 3 + \log 3^8)$ $= 4(\log 3 + 4\log 3^8)$ $= 4\log 3 + 4\log 3^8$ $= 4\log 3 + 32\log 3$ 4 = 4 log 3 + 3 = log 3 41.42 = 36 log 3 or 4 log 3 = 4 log 1968 3 24 + 9+3.9+3.3.9+(2). 24 + So (27 1 24 + a 24 + 9

24 + 27

total length

duestion 2.

(a)
$$\frac{Z}{C=1} 3\left(\frac{1}{2}\right)^{r}$$

$$a = 3 \cdot \frac{1}{2} = \frac{3}{2}$$
 $5_0 = \frac{a(1-r^n)}{1-c}$

$$S_{10} = \alpha(1-r^{2})$$

$$= \frac{3(1-(\frac{1}{2})^{2})}{1-\frac{1}{2}}$$

$$= 3\left(1-\left(\frac{1}{2}\right)^{10}\right)$$

$$=3.\frac{1023}{1024}$$

$$=\frac{3069}{1024}$$

(6)
$$16 \times 9 = \frac{81}{16}$$

$$ar^4 = \frac{81}{16}$$

$$\frac{16r^4}{16} = \frac{81}{16}$$

$$r^4 = \frac{81}{256}$$

$$f' = \frac{3^4}{2^8}$$

$$\therefore C = \left(\frac{3^4}{2^8}\right)^{\frac{1}{4}}$$

$$= \frac{3^{2-n} \times 2^{n} \cdot 3^{2n}}{(2^{2} \cdot 3)^{n-2}}$$

$$(2^2.3)^{n-2}$$

$$= \frac{3^{2} \cdot 3^{2} \cdot 2^{2} \cdot 3^{2}}{2^{2n-4} \cdot 3^{n-2}}$$

(d) (i)
$$(x-2)^2 + (y+1)^2 = 25$$

$$\beta$$
. radius = 5

(ii)
$$2x-y+3=0$$
 $(2,-1)$
 $d=|2x,-y,+3|$

$$= \frac{|4+1+3|}{\sqrt{5}}$$

$$=\frac{8}{\sqrt{5}}$$
 (3.58)

$$x^2 + \frac{64}{5} = 25$$

$$\chi^2 = \frac{61}{5}$$

 (≈ 1)

$$\cos \theta = \frac{2^2 + 4^2 - 5^2}{2.2.4}$$

$$(2-3k)y = (1+2k)x + 1-k$$
 (d) $T_1+T_2+T_3 = 4$

$$y = \frac{1+2k}{2-3k}$$
 $x + \frac{1-k}{2-3k}$

$$x-2y+1+\frac{3}{8}(2x+3y-1)=0$$

$$13 = \frac{-6 - 5x}{-2}$$

$$-9 = \frac{3 - 5y_2}{-2}$$

$$\beta = (4, -3)$$

$$S_6 = 3b = a(r^6-1)$$

$$S_3 = 4 = a(r^3-1)$$

$$\frac{S_{6}}{S_{3}} = \frac{36}{4} = \frac{A(r^{6}-1) \cdot \frac{(r-1)}{r}}{(r-1)}$$

$$\frac{r^6-1}{r^3} = 9$$

$$(m-1)(m-8)=0$$

(e)
$$6\cos^2\theta + \sin\theta - 4 = 0$$

 $6(1-\sin^2\theta) + \sin\theta - 4 = 0$
 $-6\sin^2\theta + \sin\theta + 2 = 0$
 $-6\sin^2\theta - \sin\theta + 2 = 0$
 $6\sin^2\theta - \sin\theta + 2 = 0$
 $(3\sin^2\theta - \sin\theta + 2 = 0)$
 $(3\sin^2\theta - 2)(2\sin\theta + 1) = 0$
 $\sin^2\theta + 2\sin^2\theta + 1$
 $\sin^2\theta + 1$

0 = 210° , 330°

Avea =
$$\frac{1}{2} \cdot x \cdot x \cdot 5 = 30$$

 $40 = \frac{x^2}{2} \cdot 5 = 30$
 $40 = \frac{x^2}{2} \cdot \frac{1}{2}$
 $160 = x^2$
 $x = \sqrt{160}$
 $x = 4\sqrt{10}$

(b)
$$\frac{1+\cos A}{1-\cos A} = \left(\csc A + \cot A\right)^2$$

$$= \frac{\cos cA + \cos A}{\cos cA + \cot A}$$

$$= \frac{(\cos cA + \cot A)^{2}}{\cos cA - \cot^{2}A}$$

$$= \frac{(\cos cA + \cot A)^{2}}{\cos cA + \cot A}$$

$$\chi^{2} = 60^{2} + 80^{2} - 2.60.80. \cos 132$$

$$= 3600 + 6400 - 960 \cos 132$$

$$= 16423.65$$

$$\chi = \sqrt{16423.65}$$

$$= 128.15$$

(d) x = log 2 y = log 3 Z = log 5 log 25 - log 54m = log 52 - (log 27+log 2+logm) = 2/095 - (3/093 + /092 +1) = 2z - (3y + x + 1)= 22 -3y -x -1 (e) test n=1 5'-1 = 5-1 = 4 : true for n=1 let statement be true for n=k 5-1 = 4M need to show 5 -1 also divisible 5 = 5 5 -1 $=5.5^{k}-5t4$ $= 5(5^{k}-1) + 4$ = 5.4M + 4= 20M +4 = 4 (5m +1) divisible by 4. i true for n= k+1

Since true for M=1

: true for K=1

shown true for t+1 : true
for 2 and 50 on

: true for all n.

grand grand to the grand of the same wife.

were same on the same of the s

a per comment of the comment of the