St George Girls' High School

Year 11

Common Test -2

June 2003

Mathematics

Time Allowed: 75 minutes

Instructions

- 1. All questions should be attempted.
- 2. Show all working.
- 3. START EACH QUESTION ON A NEW PAGE.
- 4. Marks will be deducted for careless work or poorly presented solutions.
- 5. On the cover sheet of the answer booklet clearly show:
 - a) your name
 - b) your mathematics class and teacher

Question 1 (8 marks) – Start a New Page

Marks

a) Factorise: $3 + 2x - x^2$

2

b) Find all values of θ such that $\cos 2\theta = 1$, $0^{\circ} \le \theta^{\circ} \le 360^{\circ}$

2

c) If $f(x) = x^2 - 1$ and g(x) = 1 - 3x

Find:

(i) f(-2)

1

(ii) x if g(x) = 4

1

(iii) f[g(x)]

2

Question 2 (8 marks) – Start a New Page

Marks

a) Evaluate: $\frac{\cos (78^{\circ}12)}{\sin 215^{\circ}24}$

1

giving your answer correct to 3 decimal places.

b) Using EXACT ratios show that

3

$$\sin^2 60.\cot 30^\circ + \sec 30^\circ = \frac{17\sqrt{3}}{12}$$

c) A ship sails from port P for 135km on a bearing of 298° to reach port Q. From port Q it sails on a bearing of 49° for 210km to port R.

4

Find to the nearest km, the distance of port P from port R.

[not to scale]

Question 3 (8 marks) – Start a New Page

Marks

a) Solve for θ where $-180^{\circ} \le \theta^{\circ} \le 180^{\circ}$

3

$$\tan^2\theta - \tan\theta = 0$$

b) Simplify: $cos(180 - \theta) \cdot cot(90 - \theta)$

2

c) A triangle has sides 12cm and 7cm with the angle opposite the 7cm side being 29°. Find TWO possibilities for the angle opposite the 12cm side (to nearest minute) and explain why there can be two answers.

Question 4 (8 marks) – Start a New Page

Marks

2

a) Copy this diagram into your answer booklet and sketch the inverse relation showing essential features.

- b) Determine algebraically the <u>inverse</u> of the function $y = \frac{1}{x} 1$. [Give the inverse with y as the subject]
- c) (i) Sketch the graph of the parabola $y = 1 x^2$ showing the co-ordinates of the points where x = -1, x = 0 and x = 1
 - (ii) Using part (i), and by noting any observations about reciprocals, graph $y = \frac{1}{1-x^2}$

Question 5 (8 marks) – Start a New Page

Mark

a) Solve: |5x + 3| = 7

2

- b) Consider the function $g(x) = \sqrt{2-x}$
 - (i) State the domain and range

,

(ii) Sketch y = g(x)

1

c) (i) On the same set of axes carefully graph

$$y = |x+1|$$
 and $2x + y - 1 = 0$

2

(ii) Use your graph to solve $|x+1| + 2x \le 1$

Question 6 (8 marks) - Start a New Page

Marks

a) (i) Express $\frac{2}{7}x = 1 - \frac{5}{7}y$ in general form.

1

(ii) Give the x and y intercepts of the line from (i).

1

b)

(ii)

Show that the equation of the line through A and B is 3x - 8y + 17 = 0

1

(i) Find the EXACT distance of A to B.

2

(iii) Find the length of the altitude of the triangle from AB to C.

2

(iv) Hence, or otherwise, find the area of the triangle ABC.

Question 7 (8 marks) – Start a New Page

Marks

a) Find the equation of the line through (-1, -3) parallel to the line with equation 3x - 2y = 12.

3

b) (i) Shade the region defined by the intersection of $x \ge -1$, $y \le 2$ and $2x - y - 4 \le 0$

3

(ii) Let the point of intersection of the lines y = 2 and 2x - y - 4 = 0 be A. Find the size of the acute angle at A. (Correct to the nearest minute).

Question 8 (8 marks) – Start a New Page

Marks

- a) If $\sin \theta = \frac{2}{3}$ and $\tan \theta < 0$
 - (i) give the EXACT ratio for $\cos \theta$

2

(ii) give the EXACT ratio for $\cot \theta$

1

(iii) by using the exact ratios above, show $\frac{\sin \theta}{\cos \theta} = \tan \theta$

2

b) If 2x-3y-3=0 and x+ay+b=0 are perpendicular to one another. Find the values of a and b if the two lines also intersect at x=1.

1. a)
$$3+2x-x^{2}=(3-x)(1+x)$$

b)
$$\cos 2\theta = 1$$
 $0 \le \theta \le 360$
 $\therefore 0 \le 20 \le 720$
 $2\theta = 0,360,720$
 $\therefore \theta = 0,180,360$

c) i)
$$f(-z) = (-z)^{2} - 1$$

$$1 - 3 \times = 4$$

$$-3 \times = 3$$

$$\times = -1$$

(ii)
$$f(1-3x) = (1-3x)^{-1}$$

= $1-6x+9x^{-1}$
= $9x^{-6}6x$

b)
$$\sin^2 60. \cot 30 + \sec 30 = \frac{17\sqrt{3}}{2}$$

LHS =
$$\left(\frac{\sqrt{3}}{2}\right)^2 \cdot \sqrt{3} + \frac{2}{\sqrt{3}}$$

= $\frac{3\sqrt{3}}{4} + \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
= $\frac{3\sqrt{3}}{4} + \frac{2\sqrt{3}}{3}$
= $\frac{9\sqrt{3} + 8\sqrt{3}}{12}$
= $\frac{17\sqrt{3}}{3}$

$$RQP = 69^{\circ}$$
 $PR^{2} = 135^{2} + 210^{2} - 2x135x210 \cos 69$

Distance between parts is \$ 205km (to nort km)

3a)
$$\tan^2 \theta - \tan \theta = 0$$

 $\tan \theta (\tan \theta - 1) = 0$
 $\tan \theta = 0$ $\tan \theta = 1$
 $\theta = 0^\circ$ $\theta = 45^\circ, -135^\circ$

b)
$$\cos (180-9) \cot (90-0)$$

= $-\cos \theta \times + \sin \theta$
= $-\cos \theta \times \frac{\sin \theta}{\cos \theta}$

b)
$$f^{-1}(x): x = \frac{1}{y} - 1$$

 $xy = 1 - y$
 $(1 + xc) y = 1$
 $y = \frac{1}{1 + xc}$

5. a)
$$|5x+3|=7$$

 $5x+3=7$ $5x+3=-7$
 $5x=4$ $5x=-10$
 $x=\frac{1}{5}$ $x=-2$

(-2,1)
$$y = |x+1|$$

$$y = |x+1| \qquad y = 1 - 2\pi$$
for $x \le 0$ $|x+1| \le 1 - 2\pi$

$$\therefore |x+1| + 2\pi \le 1$$

6. a)i)
$$\frac{2\pi}{7} = 1 - \frac{5}{7}y$$

 $2\pi = 7 - 5y$
 $2\pi + 5y - 7 = 0$

ii) x mercept
$$y=0: x=\frac{1}{2}$$

y mercept $x=0: y=\frac{1}{5}$

b) i)
$$AB = \sqrt{(5+3)^2 + (4-1)^2}$$

= $\sqrt{73}$

ii)
$$m_{AB} = \frac{4-1}{5+3}$$

 $= \frac{3}{8}$
 $y-1 = \frac{3}{8}(x+3)$
 $8y-8 = 3x+9$
 $3x-8y+17=0$.

(iii)
$$d = \frac{|2 \times 3 - 8 \times -3 + 17|}{\sqrt{3^2 + (-8)^2}}$$

= $\frac{47}{\sqrt{73}}$

in: area of
$$\triangle ABC = \frac{1}{2} \times AB \times d$$

$$= \frac{1}{2} \times \sqrt{13} \times \frac{47}{\sqrt{13}}$$

$$= 23\% \text{ sq. u.}$$

ii)
$$cos\theta = \frac{3}{3}$$
iii) $sin\theta = \frac{2}{3} = \frac{2}{\sqrt{8}}$

$$\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}}$$

$$\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}}$$

$$\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}}$$

