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,_ i Question 1 (9 marks) Marks

Higher School Certificate Course

a)  Find the equation of the curve which passes through the point (1, 5) and which has its

Assessment Task 1 first derivative given by (—?l =x% - 2x+1
X
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b) Evaluate J ,\"(2—-,\“ )3 dx 2
0

1
\]I+.\'2 l

i Je) (i) Differentiate
i
|

x dx

I\/j
—rdx 2
O+ at)iex?

(ii)y Hence, evaluate

Mathematics
Extension 1

d)  The area enclosed by the parabola x?= 4y and the line » =1 is rotated about the
x-axis. Find the volume of the solid so formed. 2

General Instructions K
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Question 2 ( 8 marks)

—> S

Yy e~ Marks

> X

(i) Show that A(-1, (’"'l) and B(l, el) lies on both curves by solving simultaneous
cquations. [  The curves ave Y = & and y= %] 2

(i) Show that the arca bounded by y=e" and the x-axis from x=-1 to x=1 is

i .
G - a>sq units. 2
¢

(ili) Use Simpson's Rule with five functional values to estimate the area under the

curve y:e’fx" [f'}-om x="1 to x=1 ; ca rrect to two degmdl (’ltm].‘i

(iv) Hence, show that an approximation for the shaded avea is 1.46 units®. 1

Question 3 (9 marks)

a) (i) Show that _f(x)=—§i‘—— is an odd function.
x“+1

4x

2
x*+

(11) Find the co-ordinates of any stationary points of f(x)=

(iii) Determine the nature of the stationary points.

(iv) Describe the behaviour of f(x) asx approaches positive or negative infinity.

(v) Sketch the graph of y = f(x) ¥
, 1 -1
. b)Y Show that - e o it e
x-—-1 x (x =) (x-2)
- -
and hence show that j~7 dx =log, =2, ¢
X =-3x+2 (x=1)
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Question 4 (§ marks) Marks
a) A spheri‘cal balloon is expanding so that its volume Vi’ increases at a constant rate

a)  Find the second derivative of x2e™* 2 of 72mn’ per second.

. ir 1

(i) Show that L= 8 2

dt ;2
| (if) What is the rate of increase of its surface area Amm® , when the radius is | 2mm? 3
i

, 4
[Given: V = 570'3 and A=4m? fora sphere]

L o
b) z B |
/7
/ )
/ /
/ !
;4 , ,
! : b) (i) Show that the equation of the chord joining  P2p,p=) and Q(2¢4.¢~) on the
\ +
. parabola x> = 4y is y= !)Z‘J X~ pg 2
k A — (i) Tind the co-ordinates of the midpoint M (x, y) of the interval PQO. 1

The diagram shows a cylindrical barrel of length / and radius r. The point 4 is at

one end of the barrel, at the very bottom of the rim. The point B is at the very top of (iii) If PQ passes through the external point A(~2, ~1), show that (

prgy+pg—1=0.
the barrel, half-way along its length. The length of AB is d.

. . o r e e 2 3
(i) Show that the vol‘_Lgnc of the barrel is: Hence, show that the equation of the locus of M is (x+1)" =2(y+ 5) 2
pormll 2 1 §
4 4 ;

(if) Find /in terms of d if the barrel has maximum volume for the given d.
[d being constant] 3 !
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