SYDNEY TECHNICAL HIGH SCHOOL YEAR 12 HSC ASSESSMENT TASK 2 MARCH 2007 MATHEMATICS

Extension 1

Time	Allowe	٦.

70 minutes

Instructions:

Attempt all questions

Start each question on a new page

Show all necessary working

The marks for each question are indicated next to the question

Marks may be deducted for careless or badly arranged work

Marks indicated are a guide only and may be varied if necessary

Name:	Teacher:_	

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total .
*						

QUESTION 1 - (9 marks)

- You are given $\int_{0}^{a} f(x)dx = A$. Evaluate $\int_{-a}^{a} f(x) dx$ if
 - i) f(x) is an even function
 - ii) f(x) is an odd function

(5) Evaluate
$$\int_{1}^{2} (4-2x)^3 dx$$

- For what values of x is $f(x) = x^5 5x^4$ concave down?
- The diagram shows the graph of $f^1(x)$ which is the derivative of a certain function f(x)

Given that f(0) = 0, sketch the graph of f(x)

QUESTION 2 - (9 Marks)

a) Find a primitive of $\frac{1}{2x^2}$

1

b)

Part of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is shown above

The following table gives values for the graph

 x
 0
 1
 2
 3
 4

 y
 3
 2.90
 2.60
 1.98
 0

- i) Use Simpsons rule and all 5 function values to find an approximation to the area under the curve shown above (2 dec).
- ii) If the area of the whole ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab , use this result and your answer above to find an approximate value of π to 2 decimal places,
- c) Find $\int \frac{x}{\sqrt{4-x}} dx$ using the substitution x = 4-u

QUESTION 3 - (8 Marks)

a) i) Show that the sum of

$$1 + 2^{a} + 2^{2a} + \dots + 2^{(n-1)a} = \frac{2^{na} - 1}{2^{a} - 1}$$

3

5

 $y = 2^{x}$

Using 100 inscribed rectangles as shown above, find an approximation for

$$\int_{0}^{1} 2^{x} dx$$

you may use the result in part (i)

b)

The sketch above shows $y = 4 - x^2$ and y = 3x for $x \ge 0$

- i) Find the co-ordinates of A and B
- ii) The shaded area is rotated around the y axis. Find the volume of the solid formed.

QUESTION 4 - (8 Marks)

- a) Suppose the cubic $f(x)=x^3+\alpha x^2+bx+c$ has a relative maximum at $x=\alpha$ and a relative minimum at $x=\beta$.
 - i) Prove that $\alpha + \beta = -\frac{2}{3}a$
 - Deduce that the point of inflexion occurs at $x = \frac{\alpha + \beta}{2}$

b)

- i) Find the co-ordinates of A, the vertex of the parabola.
- ii) By completing the square, make y the subject of $x=4y-y^2$
- iii) Hence or otherwise find the shaded area

QUESTION 5 - (8 Marks)

3

- The number of unemployed people u at time t was studied over a period of time.

 At the start of this period, the number of unemployed was 800 000.
 - i) Throughout the period, $\frac{du}{dt} < 0$.

 What does this say about the number of unemployed during the period?
 - ii) It is also observed that, throughout the period, $\frac{d^2u}{dt^2} > 0$. Sketch a graph of u against t.
- An isosceles trapezium ABCD is drawn with its vertices on a semicircle centre O and diameter 20cm (see diagram).
 - i) If EO = OF = $\frac{x}{2}$, show that:

$$BE = \frac{1}{2} \sqrt{400 - x^2}$$

Show that the area (A cm²) of the trapezium ABCD is given by:

$$A = \frac{1}{4}(x+20)\sqrt{400-x^2}$$

- (ii) Show that $\frac{dA}{dx} = \frac{1}{4} \left[\frac{400 20x 2x^2}{\sqrt{400 x^2}} \right]$
- iv) Hence find the length of BC so that the area of trapezium ABCD is a maximum.

a) i) Solve
$$\frac{x+1}{(x-1)^2} > 0$$

For the curve
$$y = \frac{x+1}{(x-1)^2}$$

- ii) Write down the equations of the asymptotes
- iii) Find the co-ordinates of the stationary point and determine its nature.
- iv) Sketch the curve showing the stationary point, the asymptotes and any intercepts.
- v) Mark on your graph, labelling clearly, the approximate position of any points of inflexion.

Questianl

a) ij 2A ii) 0

b)
$$\left[-\frac{1}{8} (4-2x)^4 \right]^2$$

= 0 - $\left[-\frac{1}{8} (4)^4 \right]$

= 32

c)
$$f'(x) = 5x^4 - 20x^3$$

 $f''(x) = 5x^4 - 20x^3$

~ 243, 2 #0 correct answer 243

correct answer is sec 3 as there is this maximum turning point at (0,01

.. disregard 2e + 0 13 solution.

Question 2

- $a_1 \frac{1}{2x} + c$
- $= \frac{1}{3} \left[\frac{3}{3} + 4 \times 2.9 + 2 \times 2.6 + 4 \times 1.98 + 0 \right]$ $= \frac{1}{3} \left[\frac{3}{3} + 4 \times 2.9 + 2 \times 2.6 + 4 \times 1.98 + 0 \right]$
- ii) Area = TTx3x4 = 3TT : 3TT = 9.24
- c) 2 = 4-u

$$\int \frac{x}{\sqrt{u-x}} dx = \int \frac{(u-u)}{\sqrt{u}} du$$

$$= \int -44 e^{-1/2} + 4e^{-1/2} du$$

$$= -8e^{-1/2} + 2e^{-3/2} + c$$

$$= -8\sqrt{4-2} + 2\sqrt{(4-2i)^3} + c$$

a)i)
$$S_n = \frac{1 \cdot (2^{an} - 1)}{2^{a} - 1}$$

$$= \frac{2^{an} - 1}{2^{a} - 1}$$

ii) Area=
$$\frac{1}{100}$$
 $\left[2^{0}+2^{0.01}-1+2^{0.02}\right]$
= $\frac{1}{100}$ $\times \frac{2^{0.01}-1}{2^{0.01}-1}$
= $\frac{1}{100}$ $\times \frac{2-1}{2^{0.01}-1}$
= $\frac{1}{100}$ $\times \frac{2-1}{2^{0.01}-1}$

b)i)
$$4-x^2=3x$$
 $x^2+3x-4=0$
 $x^2+3x-4=0$

a) i)
$$f(3c) = 3z^2 + 2az + b$$

Rust $x = -\frac{ba}{3}$

ii) f(x)=6x+2a

$$f''(x) = 0$$

$$6x + 2a = 0$$

$$x = -\frac{a}{3}$$

$$but a = -\frac{3(x+\beta)}{2}$$

$$\therefore x = -(-\frac{3(x+\beta)}{6})$$

11)
$$x-4 = -(y^2-4y+4)$$

 $4-x = (y-2)^2$
 $y-2 = \pm (4-x)$

iii) Area =
$$\int_{0}^{4} 2 - \sqrt{4 - 2} dx$$

$$= \left[236 + 2/3 (4 - 2)^{3/2} \right]_{0}^{4}$$

$$= \left[8 + 0 \right] - \left[0 + 2/3 \cdot 8 \right]$$

$$= 2^{2/3} + (3)$$

Question 5
a) i) number i's
decreasing
ii
$$\frac{1}{300,000}$$

b) i) $10^2 = (\frac{x}{2})^2 + BE^2$
 $E = \sqrt{10^2 - (\frac{x}{2})^2}$
 $= \sqrt{400 - x^2}$
 $= \frac{1}{2} \sqrt{400 - x^2}$

ii) Aren = 1, [] 400-2 20+2]
= 1 (2+20) 400-22

$$A' = \frac{1}{4} \begin{bmatrix} 20 & 400 - x^2 & + 2x & 400 - x^2 \end{bmatrix}$$

$$A' = \frac{1}{4} \begin{bmatrix} 20 \cdot 1 & -2x & (400 - x^2)^{-1/2} \\ 2 & 1 & 1 \end{bmatrix}$$

$$+ (400 - x^2)^{\frac{1}{2}} + x \cdot \frac{1}{2} \cdot 2x & (400 - x^2)^{-1/2}$$

Formaximum are dA =0

-2(x+20)(x-10)=0

1. 2 2-20 as 10
diffegard 2 = -20

s. maxarea when 2 = 1

$$y' = \frac{2x+1}{(2x-1)^2}$$

$$y' = \frac{(2x-1)^2}{(2x-1)^4}$$

$$\frac{(2x-1)^4}{(2x-1)^4}$$

$$= \frac{(x-1)[x-1-2z-2]}{(x-1)^4}$$

$$\frac{-2-3}{(2e-1)^3}$$

when y' = 0

$$x=-3$$

v) point of inflexion

as and the