NAME:
CLASS:

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 2

MARCH 2007

MATHEMATICS

Time Allowed:

70 minutes

Instructions:

- Write your name and class at the top of each page
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start <u>each</u> question on a <u>new</u> page.

Question 1	Question 2	Question 3	Question 4	Question 5	Total
/12	/12	/12	/12	/10	/58

QUESTION 1 Marks

a) Differentiate the following:

i) $y = x^3 + 4x^2 + 2$ 1

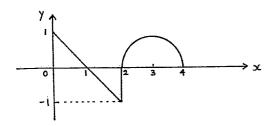
ii) $y = \frac{3x}{x+2}$ 2

iii) $y = (2x+1)^4$ 2

b) Find the gradient of the tangent to the curve $y = 4x^3 + x$ at the point (1,5) 2

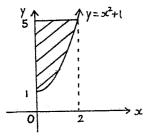
c) Find:

i) $\int x^4 + 3x^2 dx$ 1


ii) $\int (x-5)(x+4)dx$ 2

iii) $\int \frac{x^3 - 3x^4}{x^2} dx$ 2

QUESTION 2


Marks

a) Find the exact value of $\int_{0}^{4} f(x) dx$ given

b) Find
$$\int (2x-1)^5 dx$$

The sketch shows an arc of the curve $y=x^2+1$.

Calculate the shaded area.

d) The gradient of a curve is given by

$$\frac{dy}{dx} = 3x^2 - 12$$

i) Find $\frac{d^2y}{dx^2}$

ii) Find the values of x for which the curve both increases <u>and</u> is concave downwards.

3

iii) If the curve passes through (1, -2) find the equation of the curve.

2

2

3

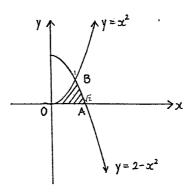
1

2

) Find the primitive function of \sqrt{x}

QUESTION 3

Melanie joined a Superannuation Fund, investing \$P at the beginning of every year at 8% p.a. compound interest (compounded yearly).


Write an expression for the amount of her investment at the end of the first year.

ii) Write an expression for the amount of her investment at the end of the second year.

iii) Write an expression for the amount of her investment at the end of twenty five years

iv) If at the end of twenty five years, she wishes to collect \$500,000 calculate the value of \$P to the nearest dollar.

c)

The shaded region OAB is bounded by the parabolas $y=x^2$ and $y=2-x^2$ and the x axis from x=0 to $x=\sqrt{2}$.

B is the point of intersection of the two parabolas in the first quadrant. Find the co-ordinates of B.

ii) Calculate the area of the shaded region OAB (2 dp).

3

2

Marks

2

1

1

1

2

QUESTION 4

Marks

3

2

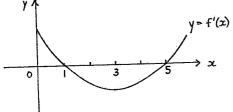
a) A function is defined by $y=3x^2-2x^3$

i)	Find the co-ordinates of any turning points and determine their nature	
-,		

ii) Given that there is a point of inflexion, find its co-ordinates. y'' = 0

iii) Sketch the function from x=-1 to x=2

Note Your sketch must be neat


Use a ruler to draw the axes

Label all important points

iv) Find the area bounded by the curve $y=3x^2-2x^3$ and the x axis from x=0 to x=2

b)

The diagram shows the graph of the gradient function of the curve y = f(x).

For what value of x does f(x) have a local minimum?

Test continues over page . .

QUESTION 5 Marks

a) A cylindrical container closed at both ends is made from a sheet of thin plastic.

The surface area of the cylinder is 600π centimetres².

i) Show that the height h of the cylinder is given by the expression: $h = \frac{300}{r} - r, \text{ where } r \text{ is the radius.}$ ii) Find an expression for the volume V in terms of r.

1

iii) Find the height of the container if the volume is to be a maximum.

3

b) i) Differentiate $y = x^3 (1+x)^3$

Hence, solve $\frac{dy}{dx} = 0$

End of Test

HSC ASSESSMENT TASK 2 - MARCH 2007

QUESTION I	QUESTION 2
a) i. $y = x^3 + 4x^2 + 2$	a) $\int_{0}^{4} f(x) dx = \frac{1}{2} \times \pi \times 1^{2}$
y = x + x + z	α) +(x) αx = 2/4//.
$\frac{dy = 3x^2 + 8x}{dx}$	2
	b) $\int (2x-1)^5 dx = (2x-1)^6 + c$
	$\frac{6}{6\times 2}$
u=3x v=x+2	$= (2x-1)^{6} + c$
u'=3 $v'=1$	12
$\frac{dy}{dx} = \frac{3(x+2) - 3x(1)}{(x+2)^2}$	
$dx = (\chi + 2)^2$	c) $A = 5 \times 2 - \int_{0}^{2} x^{2} + 1 dx$ = $10 - \left[\frac{x^{3} + x}{3} \right]_{0}^{2}$
= 3x + 6 - 3x	$= 10 - \frac{5}{3} \times \frac{3}{3} + \times \frac{7^2}{3}$
1.11.2	L3 Jo
= 6	$= 10 - \left[\frac{2}{3} + 2 - 0 \right]$
$= 6$ $(x+2)^{T}$	$= 10 - \left[\frac{2^{3} + 2 - 0}{3} \right]$ $= 10 - 4 \frac{2}{3}$ $= 5 \frac{1}{3} u^{2}$
	$= 5\frac{1}{3} u^2$
iii. $y = (2x+1)^4$ $\frac{dy}{dx} = 4(2x+1)^3 \times 2$ $\frac{dx}{dx} = 8(2x+1)^3$	
$dy = 4(2x+1)^3 \times 2$	$\frac{dy}{dx} = 3x^2 - 12$
$dx = 8/2x + N^3$	कर्र
	$\frac{1. d^2y = 6x}{dx^2}$
b) $y = 4x^3 + x$ $\frac{dy}{dx} = 12x^2 + 1$	
$dy = 12x^2 + 1$	ii. Increasing: dy >0
वंद	$3x^2 - 12 > 0$
when $x=1$, $m_{tangent} = 12 \times 1^2 + 1$ = 13	3(x+2)(x-2)>0
= 13	x < -2, x > 2
c) i. $\int x^4 + 3x^2 dx$ = $\frac{x^5}{5} + x^3 + c$	Concave down: dy <:0
$= x^5 + x^3 + c$	6x < 0
5	x < 0
$ii. \int (x-5)(x+4) dx$: both increasing and concave
$= \int x^2 - x - 20 dx$	$\frac{\text{down } x < -2}{}$
$= \frac{x^3 - x^2 - 20x + c}{3}$	
3 2	$iii. y = \int 3x^2 - 12 dx$
iii x3-3x4 dre	$y = x^3 - 12x + c$
x ²	when x=1, u=-2
$= \left(x - 3x^2 dx \right)$	when $x=1$, $y=-2$ $-2=1^3-12.1+c$
$= \int x - 3x^2 dx$ $= x^2 - x^3 + c$	c = 9
2	
	$\therefore y = x^3 - 12x + 9$
	3

	2
QUESTION 3	QUESTION 4
a) $\sqrt{x} = x^{\frac{1}{2}}$ primitive = $x^{\frac{3}{2}} + c$ $= \frac{2}{3}x^{\frac{3}{2}} + c$	a) $y = 3x^2 - 2x^3$ $\frac{dy}{dx} = 6x - 6x^2$
$primitive = x^2 + c$	$du = 6x - 6x^2$
3	₫¤
$= 2 \times \frac{3}{2} + C$	$\frac{d^2y = 6 - 12x}{dx^2}$
3	dx ²
b) i. $A_1 = P(1.08)$	i. Stat pts: dy = 0
ii. $A_2 = P(1.08)^2 + P(1.08)$	$6x - 6x^2 = 0$
$= P(1.08^{2} + 1.08)$	6x(1-x)=0
$= P(1.08^{2} + 1.08)$ iii. $A_{25} = P(1.08^{25} + 1.08^{24} +$	x = 0
+ 1.08)	when $x=0$, $y=0$
iv. $A_{25} = P \times 1.08 (1.08^{25} - 1)$	$\frac{d^2y}{dv^2} \rightarrow 0$
1.08-1	i interv
$500\ 000 = P \times 1.08\ (1.08^{25}-1)$: min at (0,0)
0.08 P = \$6333 (nearest	
P = \$6333 (nearest	when $x=1$, $y=1$
dollar)	$\frac{d^2y}{dx^2} \leftarrow 0$
ϕ i. $x^2 = 2 - x^2$: max at (1,1)
$2x^{2} = 2$ $x^{2} = 1$ $x = 1 (st quadrant)$ $y = 1^{2}$	120
x = 1	ii. Inflexion: $\frac{d^2y}{dx^2} = 0$
$\mathcal{I} = 1$ (1st quadrant)	6 - 12x = 0
<u>y = 1^</u>	12x = 6
8(1)	$x = \frac{1}{2}$
∴ B(1,1)	inflexion at $(\frac{1}{2},\frac{1}{2})$
ii. $A = \int_{1}^{1} x^{2} dx + \int_{1}^{2} 2 - x^{2} dx$	ii.
$\frac{11. A - \int_0^1 \frac{x \cdot dx}{x^2 + \int_1^1 \frac{z - dx}{x^2 + \int_1^1 \frac{z}{x^2 + \int_1^1 \frac{z - dx}{x^2 + \int_1^1 \frac{z - dx}{x^2 + \int_1^1 z - d$	<u> </u>
$= \left[\frac{x^3}{3}\right]^1 + \left[2x - \frac{x^3}{3}\right]^{\sqrt{2}}$	
[3]0 [3]1	
$= \left[\frac{1^3 - 0}{3}\right] + \left[\left(2\sqrt{2} - \frac{\sqrt{2}}{2}\right)^3\right]$	
3 1 (3)	
$-(2\times 1-1^3)$	
$-\left(2\times l-\frac{1}{3}\right)$	
$=\frac{1}{3}+\left[2\sqrt{2}-2\sqrt{2}-\left(2-\frac{1}{3}\right)\right]$	- 1 1 2 2
A = 0.55 (2 dp)	
	-+-

$A = \int_{0}^{3} 2x^{2} - 2x^{3} dx +$	$\frac{dV}{dr} = 300\pi - 3\pi r^2$
$A = \int_{0}^{2} 3x^{2} - 2x^{3} dx +$	dr
$\int_{3}^{2} 3x^{2} - 2x^{3} dx$	$\frac{d^2V}{dr^2} = -6\pi r$
2.	dr ²
$= \left[\frac{x^3 - \frac{x^4}{2}}{\frac{3}{2}} \right]_0^{\frac{3}{2}} + \left[\frac{x^3 - \frac{x^4}{2}}{\frac{3}{2}} \right]_0^{\frac{3}{2}}$	$\max_{\mathbf{d}} V : \frac{dV}{dr} = 0$
= \ \frac{1}{2} \left _0 \ \ \frac{1}{2} \ \frac{1}{2} \ \]	
_[23 1 (3)4 - 0]	$300\pi - 3\pi \gamma^2 = 0$
$= \left[\left(\frac{3}{2} \right)^3 - \frac{1}{2} \times \left(\frac{3}{2} \right)^4 - 0 \right]$	(100 12)=0
$+\left[\left[\frac{2^{3}-2^{4}}{2}\right]-\left[\left(\frac{3}{2}\right)^{3}-\frac{1}{2}\left(\frac{3}{2}\right)^{3}\right]$	r = 10 only (r>0)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
- 27 + - 27	when $r=10$, $\frac{d^2V}{dr^2} < 0$
$= \frac{27}{32} + \left -\frac{27}{32} \right $	(A)
$A = 16 u^2 (1.6875)$:. max V when r=10
	: height = 300 - 10
b) $f'(x) = 0$ at $x = 1$ and 5	. 10
ié stationary points on f(x)	: h = 20 cm
when $x < 1$, $f'(x) > 0$	3 /
ie increasing	b) i. $y = x^3 (1+x)^3$
when $1 < x < 5$, $f'(x) < 0$	3 (111)3
$ \begin{array}{ccc} & \text{if} & \text{decreasing} \\ & \text{when} & x > 5, & f'(x) > 0 \end{array} $	$u = x^{3} y = (1+x)^{3}$ $u' = 3x^{2} y' = 3(1+x)^{2}$
when $x > 5$, $f'(x) > 0$	$u' = 3x^2 V - 3(17x)$
ié increasing	1 2 2 (14 2) 3 + 2 2 3 (14 2)
	$\frac{dy = 3x^{2}(1+x)^{3} + 3x^{3}(1+x)^{2}}{dx^{2} = 3x^{2}(1+x)^{2}[(1+x) + x]}$
$\frac{1}{2}$ min when $x = 5$	$ax = 3x (1+x) (1+2x)$ = $3x^2 (1+x)^2 (1+2x)$
	- 332- (17-2)
	$i = 3x^2(1+x)^2(1+2x)$
	1. 0- 32 (1100) 5
QUESTION 5	$x = 0, -1, -\frac{1}{2}$
- 02 L 0mmh	, , , ,
a) i. $SA = 2\pi r^2 + 2\pi rh$ $600\pi = 2\pi r^2 + 2\pi rh$	
$600\pi = 2\pi + 211\pi$	
$300 = r^2 + rh$ $rh = 300 - r^2$	
$h = 300 - r^2$	
n - 300-1	
∴ h= 300 - r	
$\frac{1}{r}$	
21	
$ii. V = \pi r^{-h}$ $= \pi r^{2} (300 - r)$	
- 111 (500 .)	
: V = 300 TT - TT3	
••••	