St Vincent’s College *
Assessment Task Three

Mathematics
2009

General Instructions

* Reading time 5 minutes

* Working time 1—;— hours

* Write using blue or black pen

* Boatd approved calculators may be used

® A table of standard integrals is provided

* All necessary wotking should be shown in all questions
o Weighting 25%

Examination structutre

Total Matks 79
o Attempt all questions 1 —7

* All questions ate of equal value (12 marks ) except quesﬁon ‘

7 which is 7 marks
* Answer in 4 booklets, Book 1 questions 1&2,
Book 2 questions 3&4,
Book 3 questions 5&6,
Book4 question 7 only

QUILSTION ONE (12 marks)

i.

ii.

ii.

iv.

Calculate, correct to two decimal places the value of &**

Write down the exact value of cos150°

Convert B?R radians to degreés
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FIGURE NOT TO SCALE.

The diagram shows the sector of a circle.

Find the area of this sector. Give your answer to the nearest square

centimetre.
V.
D
A 9
B E [
NOT TO SCALE
Find the value of x.

vi.

vii.

viii.

State the domain of the function ~2x—4

Sketch the functiony = 4x —x and then solve 4x —x* <0

Find jcosdxdx

Factorise x> —3x+2
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QUESTION TWO (12 Marks)

i

4 A(1, 5)

'\i B(8,-2)

y

Y ¢(1, -7)
DIAGRAM NOT DRAWN TO SCALE

In the diagram O(0, 0), A(1, 5), B(8, ~2) and C(7, =7) are the vertices of

quadrilateral OABC,

a. Find the midpoint of the interval joining AC,

b. Find the gradient of AB.

c. Show that the equation of AB is x +y = 6.

d. Find the exact length of AB.

e. Show that AB is parallel to OC.

f. Find the exact perpendicular distance frovrn Oto AB.

g Hence find the area of parallelogram OABC.
ii.. For y =3 cos 2x, state the amplitude and perioa of the function.
iit, Sketch the graph y=e*+2, and state its range?
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QUESTION THREE

1

it.

(12 marks)

Differentiate each of the following:

sin X

X

2x+1

tan(4x — 3)

T

cos * 3x

Find the equation of the tangent to the curve y = x sin x at the point (, 0).
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QUESTION FOUR (12 marks)

i

A el 2O B
9cm 7 [y
M
D C

DIAGRAM NOT DRAWN TO SCALE
ABCD is a rectangle with AB = 12 cm, AD =9 cm and AM is perpendicular to

BD.

a. Copy the diagram onto your answer sheet.

=

Find the length of BD.
c. Provethat AABM issimilar to ADBA .

d. Hence find the length of BM.

4
ii. Evaluate J.e 24 s
2
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iii. The derivative at any point on the curve y =f(x ) is given by

% = ¢ Find the equation of the curve, f(x, ) given (0,2)

lies on the curve.
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QUESTION SIX (12 marks)
1,

vy 4

y = cOS X

r
6

® A

The diagram shows the graphs of the functions y = cos x and y = sin 2x

T
betweenx =0 and x=—.

. T T
The two graphs intersect at x=— and x=—.

2
Calculate the area of the shaded region.
" . . 1
ii. Consider the functiony = —e™ :
X
a. For what values of x is this function defined?
b. Describe the behaviour of the function as x:
. approaches zero. -
B. increases indefinitely.

c. Find any stationary points and determine their nature.

d. Sketch the curve of this function.
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QUESTION FIVE (12 marks)

i,

iii.

iv.

V.

Consider the curve y =x + ™,

Show that the curve is concave up for all values of x. . ()

Find the volume of the solid formed when the area bounded by the
lines x = 0 and x = 1 and the curve y = €* is rotated about the x axis.

Leave your answer in exact form.

- d 2 2 ! 2
Given that ——(e" ) =2xe* 1, evaluate Jxe" dx
dx b

Sp

Consider the function given by y = sin’x.

&)

®

a.  Copy and complete the following table in your examination
booklet. (Note that x is measured in radians.)

X 0 /4 | w/2 | 3n/4 T
y 0

)

b. Apply Simpson's rule with five function values to find an

k4
approximation to jsinl x dx
0

2
If y=e2"+e4",showthat?,—f -6d— +8
dx dx

@

y =0 @

QUESTION SIX (12 marks)

ii.

1.

yj‘

r
6

The diagram shows the graphs of the functions y = cos x and y = sin 2x

between x = 0 and x=%.

. T i
The two graphs intersect at x=— and x=—.

2
Calculate the area of the shaded region.
. . 1
Consider the functiony = —e™:
X

a. For what values of x is this function defined?

b. Describe the behaviour of the function as x:
o. approaches zero.
B. increases indefinitely.

c. Find any stationary points and determine their nature.

d. Sketch the curve of this function.
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QUESTION SEVEN (7 Marks)

i. By expressing sec 0 and tan 8 in terms of sin 6 and cos 6,
show that sec?® — tan®0 = 1. )

0]

r
. 6
The diagram shows part of the graph of the function y = tan 2x.

The shaded region is bounded by the curve, the x axis, and the line x = %

The region is rotated about the x axis to form a solid.

B
a. Show that the volume of the solid is givenby V=m= _[(sec2 2x— l)dx.‘
0

You may use the result of part (i) (@)

b. Find the exact volume of the solid.
(You may like to use the Table of Standard Integrals) (€))]
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