SYDNEY GRAMMAR SCHOOL

2012 Annual Examination

FORM V MATHEMATICS 2 UNIT

Wednesday 29th August 2012

General Instructions

- Writing time 2 hours
- · Write using black or blue pen.
- Board-approved calculators and templates may be used.

Total — 100 Marks

All questions may be attempted.

Section I - 10 Marks

- Ouestions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your name and master on this question paper and submit it with your answers.

5P: SG

5Q: BDD

5R: RCF

Checklist

- SGS booklets 6 per boy
- · Multiple choice answer sheet

• Candidature — 49 boys

Examiner

RCF

SGS Annual 2012 Form V Mathematics 2 Unit Page 2

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which of the following is the derivative of $2x^3 + 2x - 1$?

- (A) $6x^2$
- (B) $6x^2 + 2$
- (C) $6x^3 + 2x$
- (D) $6x^2 1$

QUESTION TWO

What is the gradient of the interval joining point A(-2,4) and B(-5,0)?

- (A) $-\frac{4}{3}$
- (B) $\frac{4}{7}$
- (C) $\frac{4}{3}$
- (D) $\frac{3}{4}$

QUESTION THREE

Which of the following lines does NOT pass through (1, -3)?

- (A) y+3=2(x-1)
- (B) x = -3
- (C) x + 2y = -5
- (D) y = -3x

SGS Annual 2012 Form V Mathematics 2 Unit Page 3

QUESTION FOUR

What is the correct equation for the parabola sketched above?

(A)
$$y=4-(x-2)^2$$

(B)
$$y = x^2 + 4$$

(C)
$$y = -(x+2)^2 - 4$$

(D)
$$y = x^2 - 2x - 4$$

QUESTION FIVE

Which of the following expressions is equivalent to $\log \left(\frac{3x^2}{4}\right)$?

(A)
$$\log 3 + \log x^2 \div \log 4$$

(B)
$$2(\log 3x - \log 4)$$

(C)
$$2\log x + \log 3 - \log 4$$

(D)
$$3\log x^2 - \log 4$$

QUESTION SIX

If the discriminant of a quadratic equation is a square number, which of the following types of roots will the equation have?

- (A) Real, rational and distinct roots
- (B) Equal real roots
- (C) No real roots
- (D) Real, irrational and distinct roots

SGS Annual 2012 Form V Mathematics 2 Unit Page 4

QUESTION SEVEN

Given the sequence 5, 7, 9, 11, ..., which of the following statements is INCORRECT?

(A)
$$S_5 = 45$$

(B) The common difference is 2.

(C)
$$S_n = \frac{n}{2}(8+2n)$$

(D) The *n*th term is $5 \times 2^{n-1}$

QUESTION EIGHT

Given a geometric progression with first term 5 and common ratio 2, the sum of the first ten terms is:

(A)
$$\frac{2(5^{10}-1)}{4}$$

(C)
$$5(1-2^{10})$$

(D)
$$5(2^{10}-1)$$

QUESTION NINE

The solutions of the equation $2x^2 - 6x + 3 = 0$ are:

(A)
$$x = \frac{3+\sqrt{3}}{2}$$
 and $x = \frac{3-\sqrt{3}}{2}$

(B)
$$x = 1$$
 and $x = \frac{3}{2}$

(C)
$$x = \frac{-6 + \sqrt{12}}{4}$$
 and $x = \frac{-6 - \sqrt{12}}{4}$

(D) There are no real solutions

(C) $2\cos^2\theta - 1$ (D) $2\cos^2\theta + 3$

End of Section I

GGS Annual 2012				
			QUESTION ELEVEN (15 marks) Use a separate writing booklet.	Mark
			(a) Simplify $2x^3 \times (-3x^5)$.	1
b) Expand $(2x-1)^2$.	1			
c) Evaluate, leaving your answers in exact form:				
(i) $2\sqrt{72} - 3\sqrt{8}$	1			
(ii) $\sin 60^{\circ} + \sin 90^{\circ}$	1			
(iii) $\frac{10(3^4-1)}{3-1}$	1			
(iv) log ₂ 32	1			
d) Differentiate the following:				
(i) $3x^5$	1			
(ii) \sqrt{x}	1			
(iii) $\frac{1}{3x^2}$	2			
e) Solve:				
(i) $(2x-3)(3x+5)=0$	1			
(ii) $\tan \theta = \sqrt{3}$, for $0^{\circ} \le \theta \le 360^{\circ}$	1			
(iii) $\log_3 x = 4$				
(iv) $2^{z+3} = \sqrt{32}$	2			

SGS Annual 2012 Form V Mathematics 2 Unit Page 7

QUESTION TWELVE (15 marks) Use a separate writing booklet.

Marks

- (a) Consider the arithmetic sequence 15, 18, 21,
 - (i) State the values of a and d.

(iii) Find the sum of the first one hundred terms.

(ii) Find the one hundredth term.

2

- (b) Consider the parabola with equation $y = x^2 6x + 5$.
 - (i) State the y-intercept.

(ii) Find the x-intercepts.

(iii) State the equation of the axis of symmetry.

1

(iv) Hence find the co-ordinates of the vertex. (v) State the minimum value of $x^2 - 6x + 5$.

- 1 1
- 2 (vi) Sketch the graph of $y = x^2 - 6x + 5$, clearly marking all of the above features.
- (vii) Hence solve the inequation $x^2 6x + 5 \ge 0$.
- (c) Find the limiting sum of the geometric series $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} \dots$ 2

SGS Annual 2012 Form V Mathematics 2 Unit Page 8

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

Marks

(a) Differentiate the following, without using the product or quotient rules:

(i)
$$f(x) = x^2(2x^4 - 5x)$$

(ii)
$$f(x) = \frac{x+1}{\sqrt{x}}$$

(b)

The diagram above shows the graphs of $y = 2^x$ and $y = \log_2 x$.

(i) Sketch the graph of $y = 2^{-x}$, showing clearly any intercepts.

- 1
- (ii) On a separate set of axes, sketch the graph of $y = \log_2(x-1)$, showing clearly any intercepts and asymptotes.
- [1] (iii) State the domain for $y = \log_2(x-1)$.
- (c) Find the equation of the tangent to the parabola $y = x^2 6x + 5$ at the point (4, -3). Give your answer in general form.
- (d) A cricket ball is hit skywards so that at any time t seconds after leaving the bat, the height of the ball is given by $h = 35t - 5t^2$ metres.
 - (i) Find the time at which the ball reaches its maximum height.

- (ii) Hence determine the maximum height attained.
- (e) Find the natural domain of $f(x) = \sqrt{9-x}$.

SGS Annual 2012 Form V Mathematics 2 Unit Page 9 QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks (a) Use the chain rule to differentiate: (i) $y = (3x^2 + 5)^4$ 2 (ii) $y = \sqrt{3-2x}$ 2 (b) If α and β are the roots of the equation $2x^2 - 4x + 3 = 0$, find: (i) $\alpha + \beta$ (ii) αβ (iii) $\frac{2}{\alpha} + \frac{2}{\beta}$ (iv) $\alpha^2 + \beta^2$ (c) Consider the quadratic function $f(x) = x^2 + 4x - 3$. (i) Complete the square. (ii) Hence, or otherwise, find the minimum value of the function. (d) Prove the identity $\frac{\sin \beta}{\cos \beta} + \frac{\cos \beta}{\sin \beta} = \sec \beta \csc \beta$. 2

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.	Marks
(a) Differentiate $f(x) = x^2 - 5x$ from first principles.	3
(b) An arithmetic sequence has first term 8 and sixth term 28.	
(i) Find the common difference.	1
(ii) Find the first term larger than one hundred.	2
(iii) Find the value of n for which $S_n = 680$.	3
(c) Use the quotient rule to differentiate $f(x) = \frac{5x+3}{3x-4}$.	3
(d) Use the product rule to differentiate $f(x) = 2x^4(3x+1)^3$, expressing the derivative in fully factorised form.	3

SGS Annual 2012 Form V Mathematics 2 Unit Page 10

SGS Annual 2012 Form V Mathematics 2 Unit Page 11	
QUESTION SIXTEEN (15 marks) Use a separate writing booklet.	εk
(a) Solve $3 \times 2^{x} = 5775$. Give your answer correct to two decimal places.	2
(b) A yacht sails $30 \mathrm{km}$ from harbour A to island B on a bearing of 053° , then it sails $110 \mathrm{km}$ from island B to marina C on a bearing of 285° .	
(i) Draw a clearly labelled diagram to represent this voyage.	1
(ii) Find the distance of harbour A from marina C , correct to the nearest kilometre.	2
(iii) Find $\angle ACB$, and hence find the bearing of harbour A from marina C, correct to the nearest degree.	2
(c) Consider the quadratic function $f(x) = kx^2 - 8x + 4k$.	
(i) Find the values of k for which the function has a repeated zero.	2
(ii) Find the values of k for which the function has no real zeroes.	2
$\begin{array}{c} E \\ \hline \\ A \\ \hline \end{array}$	
In the diagram above, the spiral begins with right-angled triangle ABC in which $AB = 1$ m and $\angle CAB = \alpha$, where $\alpha < 30^{\circ}$. A similar right-angled triangle ACD is drawn on the hypotenuse AC . This pattern is then continued to form triangles ADE , AEF and so on.	
(i) Show that $CD = \sec \alpha \tan \alpha$.	2
(ii) Find an expression for side DE.	2 1
(iii) The spiral pattern is continued until the tenth triangle AKL is formed. Find an expression for side KL of this triangle.	1
End of Section II	

END OF EXAMINATION

Tear-off pages follow ...

MFH FORM 2U AMMAL 2012

Section 1 Multi-Choice One Mark Each

9
$$2x^2-6x+3=0$$

 $a=2$ $b=(-6)$ $c=3$

$$x = \frac{6 + \sqrt{6^2 - 4 \times 2 \times 3}}{2 \times 2}$$

A) Vertex
$$(24)$$
 $y-4=-(x-2)^a$ $= 3\pm \sqrt{3}$ (A) Concave Down $a=(-1)$

(B) GP
$$a=5$$
 $r=2$

$$S_{10} = \frac{a(r^{10})}{r-1}$$

$$= \frac{5(2^{10}-1)}{2^{-1}}$$

$$= \frac{5(2^{10}-1)}{2^{-1}}$$
(D)

```
Question 1
 a) 2x^{3} \times (-3x^{5}) = -6x^{8}
b) (2x-1)^{2} = 4x^{2} - 4x + 1
c) 0 272 - 3\sqrt{8} = 1212 - 612
(ii) \sin 60^{\circ} + \sin 90^{\circ} = 13 + 1 or (\frac{13+2}{2})
    (ii) 10(3^{+}1) = 5(81-1)
     (M) log_32=5 (since 2=32)
00 \ y = 3x^{5}
2x^{5} \ y = x^{5}
2x^{5} \ y = 3x^{5}
 e) i) (22-3)(3x+5)= O
         x=\frac{3}{3} or x=(\frac{5}{3}) (in) 2^{x+3}=\sqrt{32}
```

$$x=\frac{3}{3}$$
 or $x=\frac{3}{3}$ / (in) $x=\sqrt{3}$ (ii) $x=\sqrt{3}$ $x=\sqrt{3}$ (ii) $x=\sqrt{3}$ $x=\sqrt{3}$

QUESTION MELVE

b)
$$y=x^2-6x+5$$
. (b) $(0,5)$

(iv)
$$Y=3^{2}-6\times3+5=9-18+5$$
 $V(3,-4)/-4$

(ii)
$$x^{a} - 6x + 5 \times 0$$

 $x > 5$ or $x < | \sqrt{ }$

a) (i)
$$f(x) = x^{2}(2x^{2}-5x)$$

$$= 2x^{6}-5x^{3}$$

$$f(x) = |2x^{5}-15x^{2}|$$

(i)
$$f(x) = \frac{x+1}{\sqrt{x}}$$

$$= \sqrt{x} + \frac{1}{\sqrt{x}}$$

$$= x^{k} + \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x}}$$

$$f(x) = kx^{-k} - kx^{-k}$$

c)
$$y=x^2-6x+5$$

 $2x-6$
 $2x-6$
 $2x-6$
 $2x-6$
 $2x-6$
 $2x-6$

e)
$$f(x) = \sqrt{9-x}$$
 $9-x>0$
 $9>x$
 $x \le 9$

AL MOILCAND a) (i) $y = (3x^{2}+5)^{4}$ (i) y= (3-20c) Lot u= 3x+5 Y= u+ / = 6x dy= 4n3 / 11=3-2x y=1/2 dm=(-2) dy= 61/2/ $\frac{df}{dx} = \frac{dy}{dx} \times \frac{dw}{dx}$ $= 4(3x+5) \times 6x$ 哉= 以(3-2x)3×(-2) = 24x (3x2+5)2 b) 200- 400x3=0 o) f(x) = x2+4x-3 (ii) Minumum is (-7) d) LHS = Sing + Coops

QUESTION 15 a) f(x) = x2-5x f(x) = Lim [(x+h)-5(x+h)]-(x2-5x)] = Lim [x+dxh+h2-5x-5h-x+5x] h>0 [x+dxh+h2-5x-5h-x+5x] = Lim [h+ 20ch-5h] 1- Lim [1/0x-5+h) = Lim (2x-5+h) b) AP a=8 t=28=a+52 (i) : 5d=20 d=4 (ii) tn= a+(n-1) & = 8+4(n-1) Ve require to >100 4n>96 Twenty fifth term / tas=104 (ii) Sn= 2 (2a+(n-1)d) We require Sn= 680 680=6n+2n2 = 2 (16+4n-4) nº+3n-340-0 = 12(12+4n)/ (n+20)(n-17)=0= Gn+2n2 n=17 since n>0/ 10 Siz=680

c)
$$f(x) = \frac{55x+3}{3x-4}$$
 $u=5x+3$ $v=3x-4$

$$f(x) = \frac{5}{3x-4}$$
 $du=5$

$$\frac{du}{dx} = 5$$

$$\frac{du}{dx} = 3$$

$$\frac{5}{3x-4}$$
 $du=5$

$$\frac{du}{dx} = 3$$

$$\frac{5}{3x-4}$$
 $du=5$

$$\frac{du}{dx} = 3$$

$$\frac{3}{3x-4}$$

$$\frac{du}{dx} = 3$$

f(3)= 2x3(3x4)3 (21x+4)

GUESTION 16

a)
$$3\times 2^{\times} = 5775$$
 $(\div 3)$
 $2^{\times} = 1925$
 $\log_{0} 2^{\times} = \log_{0} 1925$
 $(\div 3)$
 $2^{\times} = 1925$
 $\log_{0} 2^{\times} = \log_{0} 1925$
 $(\div 3)$
 $2^{\times} = 1925$
 $\log_{0} 2^{\times} = \log_{0} 1925$
 $(\div 3)$
 $2^{\times} = \log_{0} 1925$
 2^{\times

GP a=tax r=secx

KL=tp=ar9 =tanksecx