

2012 Half-Yearly Examination

FORM VI MATHEMATICS 2 UNIT

Monday 20th February 2012

General Instructions

- Writing time 2 hours
- · Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total - 90 Marks

• All questions may be attempted.

Section I - 10 Marks

• Questions 1-10 are of equal value.

Section II – 80 Marks

- Questions 11-15 are of equal value.
- All necessary working should be shown in every question.
- · Start each question in a new booklet.

Collection

Section I Questions 1-10

 Place your multiple choice answer sheet inside the answer booklet for Question Eleven.

Section II Questions 11-15

- Start each of these questions in a new booklet.
- Write your candidate number clearly on each booklet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question Eleven.

Checklist

• SGS booklets - 5 per boy

• Candidature — 80 boys

Examiner

JMR

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 2

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

Question One

Which of the following is equal to $e^x(e^x - \frac{1}{e})$?

(A)
$$e^{x^2}-e$$

(B)
$$e^{2x} - e^{-x}$$

(C)
$$e^{x^2} - e^{x+1}$$

(D)
$$e^{2x} - e^{x-1}$$

Question Two

For the function $y = x^3 + 1$, which one of the following statements is true?

- (A) The function is odd.
- (B) The function is even.
- C) The function is increasing for all values of x > 0.
- (D) There is a triple root at x = -1.

Question Three

The definite integral $\int_0^4 (x^2+2) dx$ is equal to

- (A) $\frac{88}{3}$
- (B) 18
- (C) $\frac{64}{3}$
- (D) $23\frac{1}{3}$

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 3

Question Four

Given the function y = f(x) above, which of the following statements is false?

(A) There is a local minimum at A.

(B) The concavity changes at B.

(C) There is a global maximum at C.

(D) The zeroes occur at points A and D.

Question Five

For the parabola sketched above, point A is the vertex and point S is the focus. The equation of the parabola could be

(A)
$$(y-2)^2 = 8x$$

(B)
$$y^2 = 8(x-2)$$

(C)
$$(y-2)^2 = 8(x-2)$$

(D)
$$(y+2)^2 = 8(x-2)$$

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 4

Question Six

Which of the following is a primitive of $\frac{10}{x^2}$?

(A)
$$-5x^2 + C$$

(B)
$$-10x^3 + C$$

(C)
$$-\frac{10}{x} + C$$

(D)
$$-\frac{10}{3x^2} + C$$

Question Seven

The graph of the locus of the point P(x,y) that moves so that its distance from a point A(1,1) is twice the distance from another point B(4,1) would be a

- (A) vertical line
- (B) parabola with a vertical axis of symmetry
- (C) parabola with a horizontal axis of symmetry
- (D) · circle

Question Eight

The number of solutions to the equation $e^{x+1} + x^2 + 2 = 0$ may be found by sketching graphs. Which of the following statements is true?

- (A) We should sketch $y = e^{x+1} + 2$ and $y = -x^2$ to show there are no solutions.
- (B) We should sketch $y = x^2 + 2$ and $y = e^{x+1}$ to show there are two solutions.
- (C) We should sketch $y = e^{x+1}$ and $y = -x^2 2$ to show there are two solutions.
- (D) We should sketch $y = e^{x+1} + 2$ and $y = x^2$ to show only one solution.

Question Nine

The gradient of a line that is perpendicular to 3x + 5y - 5 = 0 is

- (A) $-\frac{1}{3}$
- (B)
- (C) $-\frac{5}{3}$
- (D) $-\frac{3}{5}$

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 5

Question Ten

The equation of a line with gradient $\frac{3}{2}$ and y-intercept $\frac{1}{2}$ is

- (A) y = 3(2x 1)
- (B) $y = \frac{2x+1}{3}$
- (C) 3y=1-2x
- (D) $y = \frac{1}{2}(3x+1)$

 End of Section I	

GS Half-Yearly 2012				
			Question Eleven (16 marks) Use a separate writing booklet.	Marks
			(a) Use your calculator to find $\frac{e^3}{2}$ correct to two decimal places.	1
b) Simplify $\frac{(e^x)^4}{e^x}$.	1			
 (i) the coordinates of the vertex, (ii) the coordinates of the focus, (iii) the equation of the directrix. 	3			
d) Differentiate: $ (i) \frac{x^4}{2} $ $ (ii) 3e^{2x} $ $ (iii) (2x-1)^5 $	3			
(e) Find a primitive of: (i) $x+16$ (ii) e^{4x+1} (iii) \sqrt{x}	3			
(f) Sketch on a number plane the locus of a point P which moves so that it is always a units from the origin. Write down the equation of the locus of P.	ıys 2			

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 7

Question ELEVEN (Continued)

(g)

The function y = f(x), for $0 \le x \le 7$, is shown above. The curves are semicircular arcs.

(i) Find
$$\int_0^7 f(x) dx$$
.

1

(ii) Find the exact total area of the shaded parts.

2

Question Twelve (16 marks) Use a separate writing booklet.

Marks

|2|

(a) Evaluate the following definite integrals.

(i)
$$\int_{-1}^{1} (6x-2) dx$$

(ii)
$$\int_{1}^{2} \frac{1}{x^{3}} dx$$

(b) By completing squares, find the centre and radius of the circle $x^2 + y^2 - 4x + 8y = 5$.

(c) Given that
$$f'(x) = 2x^2 - 6$$
, find $f(x)$ if $f(1) = 0$.

(d) Consider the function $y = x^3 - 6x^2 + 7$.

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

(ii) Find the coordinates of any stationary points and determine their nature.

(iii) Find the coordinates of the point of inflexion. You must show that it is a point of inflexion.

(iv) Sketch the graph of the function, clearly showing all stationary and inflexion points. Do NOT attempt to find any x-intercepts.

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 8

Question Thirteen (16 marks) Use a separate writing booklet.

Marks

3

(a) Find the first and second derivatives of e^{x^2} .

(b) Use the quotient rule to differentiate $y = \frac{2e^{2x+3}}{x+3}$. In your answer simplify the numerator as far as possible.

(c) Use Simpson's Rule with three function values to approximate $\int_0^1 2^x dx$. Give your answer correct to two decimal places.

(d) Find the value of p if
$$\int_{1}^{p} (3x+4) dx = 20$$
 and $p > 1$.

(e) $y = 2x^2$ $A(0, 0) \xrightarrow{x}$

The diagram above shows a cup of height 8 cm whose width at the top is 4 cm. It is formed by rotating the arc AB of the parabola $y=2x^2$ about the y-axis. Find the exact volume of the cup.

The graph of y = f(x) is sketched above. Sketch on separate diagrams, clearly indicating any x-intercepts, possible graphs of:

(i)
$$y = f'(x)$$

(ii)
$$y = f''(x)$$

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 9

Question Fourteen (16 marks) Use a separate writing booklet.

Marks

- (a) Use the second derivative to explain why the graph of the function $y = e^{-2x}$ is always concave up.
- (b) Find the equation of the normal to the curve $y = x + e^x$ at the point where the curve cuts the y-axis.
- (c) Sketch a graph of the parabola $6x + y^2 = 18$ clearly indicating the vertex, focus, and directrix
- (d) A car's velocity v in metres per second is recorded each second as it accelerates along a drag strip. The table below gives the results.

t(s)	0	1	2	3	4	5
$v(ms^{-1})$	0	15	31	48	64	83

Given that the distance travelled may be found by calculating the area under a velocity/time graph, use the trapezoidal rule to estimate the distance travelled by the car in the first five seconds.

(e) Solve for x:

[3]

$$e^{2x} + e^x - 2 = 0$$

(f)

The diagram shows the curves $y = x^2$ and $y = 4x - x^2$ which intersect at the origin and at point A.

(i) Find the coordinates of point A.

2

(ii) Hence find the area enclosed by the two parabolas.

2

Exam continues overleaf ...

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 10

Question Fifteen (16 marks) Use a separate writing booklet.

Marks

3

(a) A continuous function y = f(x) satisfies all of the following conditions:

$$f(-4) < 0$$

Draw a possible sketch of the function for $-4 \le x \le 2$.

(b) Suppose that $y = e^{kx}$.

(i) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

(ii) Find the value of k such that
$$y = 2\frac{dy}{dx} - \frac{d^2y}{dx^2}$$
.

(c)

The diagram above shows the framework of a storage container which has been constructed in the shape of a rectangular prism. The container is eight times as long as it is wide, and has breadth x metres and height h metres.

- Find, in terms of x and h, an expression for the total length L of steel required to construct the frame.
- (ii) The container has volume 2304 m³.

(a) Show that
$$h = \frac{288}{\sigma^2}$$
.

(3) Show that
$$L = 36x + \frac{1152}{x^2}$$
.

(γ) Find the dimensions of the container so that the minimum length of steel is used in the construction of the frame.

End of Section II

END OF EXAMINATION

SGS Half-Yearly 2012 Form VI Mathematics 2 Unit Page 12

The following list of standard integrals may be used:

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$

NOTE: $\ln x = \log_e x, x > 0$

SYDNEY GRAMMAR SCHOOL

2012
Half-Yearly Examination
FORM VI
MATHEMATICS 2 UNIT
Monday 20th February 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- · Fill in the circle completely.
- Each question has only one correct answer.

Question	One			
ΨO	ВО	СÒ	D 🕢	
Question	Two			
A O	BO.	C 🌒	DО	
Question	Three			
A 🚯	ВО	c O	DО	
Question :	Four			
V O	B. O	C, 🔴	D O	
Question :	Five			
A O	В	сO	DО	
Question :	Six			
A ()	вО	C 🚳	DО	
Question !	Seven			
A ()	вО	сO	D 🚯	
Question Eight				
A 🙃	BO	αO	DО	
Question l	Nine			
Α̈́	В	сO	D O	
Question Ten				

вО

CO D.

A O

CANDIDATE NUMBER:

MATHS 2-aunt	Solutions.
QUESTION 12	(d) $y = x^3 - 6x^2 + 7$
(a) (i) $\int_{-1}^{1} (6x-1) dx = \int_{-2}^{6x^2} -2x \int_{-2}^{1} $ $= \left[3x^2 - 2x\right]^{\frac{1}{2}}$	(i) $dy = 3x^2 - 12x$
3-(3-2)-(3+2)	$\frac{dx}{dx^2} = 6x - 12$
(ii) $\int_{-\frac{\pi}{2}}^{2} dx = \int_{-\frac{\pi}{2}}^{2} x^{-3} dx$	
٠١٤٠	(ii) Stationary joints when $\frac{dy}{dx} = 0$ $3x^2-12x = 0$ 3x(x-y)=0
$= \begin{bmatrix} -\frac{1}{2\chi^2} \end{bmatrix},$ $= \begin{bmatrix} -\frac{1}{2\chi^2} \end{bmatrix},$ $= \begin{bmatrix} -\frac{1}{2\chi^2} \end{bmatrix},$ $= \begin{bmatrix} -\frac{1}{2\chi^2} \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
= 3 8	So (0,7) is a local maximum turning of
(b) $x^2 + y^2 - 4x + 8y = 5$ $x^2 - 4x + 4x + 4y^2 + 8y + 16 = 5 + 4 + 16$ $(x-2)^2 + (y+4)^2 = 25$	When x=4 y=43-6x42+7.
	dy = -25
Centre (2-4) } Radius 5 units }	dy = 12 >0 So (4,-25) is a local minimum turning point (iii) lossible pt. of inflexion when dy = 0 6x-12=0
(c) $f'(x) = 2x^2 - 6$	(iii) Possible pt. of inflexion when dry o
$f(x) = \frac{2}{3}x^3 - 6x + C$	$x = 2$ Wan $x=2$ $y = 2^3 - 6 \times 2^2 + 7$ $= -9$
$\beta u + f(1) = 0$ $0 = \frac{2}{3} - 6 + C$	=-9
C = 16	Chack concavity changes × 0 2 4 dis -12 0 Hz
$\frac{1}{3} - \frac{1}{3} - \frac{1}{3} = \frac{1}{3}$	So (2,9) is a point of inflexion /
	Points shape
	, , , , , , , , , , , , , , , , , , ,
	V =1+=-

_	
QUESTION 14	· · · · · · · · · · · · · · · · · · ·
70T- 75T- 157 75	
(a) y = e - 2x y' = -2e - 21c y" = 4e - 25c	$(d)D = \frac{1}{2}(0+2(17)+2(31)+2(48)+2(44)+8$
•	
enc >0 for all 14, so y = e-214 always	= 399
concave up.	
***************************************	= 199.5 Medies
$(b) y = x + e^{x}$	(e) $e^{2x} + e^{x} - 2 = 0$ $(e^{x} - 1)(e^{x} + 2) = 0$
dy = 1+ex	$(e^{x}-1)(e^{x}+2)=0$
At x = 0	
dy = [+]	Estly ex = 1
- 7.	x = 0 or e× = - Z
So gradient of tangent is . 2.	No solution, e >>0 V
and: gradient of normal 15	
When x=0	$(f)(i) \times^2 = 4x - x^2$
y=o+e ·	2x24x = 0
= 1	2x(x-2)=0
$y-y=m\left(x-x_{i}\right)$	x =0 or 2
y -1 = -1, (κ-0)	When $2c = 2$ $y = 4$ So A has coordinates $(2,4)^{\sqrt{2}}$
y-1=-{x	So A has coordinates (2,4)
24-2 = -76	72.,
x+2y-2=0	(ii) $\left(\frac{2}{2}\left(4x-x^2-x^2\right)dx\right)$
(c) $y^2 = -6x + 18$	$= \int_{-\infty}^{\infty} (4x - 2x^2) dx$
y ² ± -6 (x-3)	
a=12.	$= \left[\frac{4x^2}{2} \frac{2x^3}{3}\right]_0^2$
Vertex (3,0) }	L 2 3 Jo.
^ .	$= \left[2x^2 - \frac{2x^3}{4}\right]^2$
Orectry z=]	
126-	$= \left(8 - \frac{15}{3}\right) - 0$
(E.6)	" B units ?
Jan X	3
1	
- · · · · · · · · · · · · · · · · · · ·	

Question 15	
y A	$(\beta) L = 36x + 4h$
(a)	A KANDOIMI,
	$\sqrt{\text{increasing}}$ = 36x + 4xz88
	7.
	$V = 36 \times 1 \frac{1192}{x^2}$
2	(V) M
	(f) Minimum occurs when
	dl = 0
	$ \frac{\partial x}{\partial x} $ $ \frac{\partial x}{\partial x^3} = 0 $
	36-2304 = 0
(b) (i) dy = ke ke /	3 = 220L
, dx	$x^{3} = \frac{2304}{36}$
dy = ke kic	x =64 /
dig = ke kin	50 x = 4 V
	C(-1,11,1,1)
(ii) ex= 2kex-k	2 Ex MINIMUM
k2ex-2kekx+ekx=0	d2L _ 6912
$e^{kx}(k^2-2k+1)=0$	d ² L _ 69(2)
$e^{kr}(k-1)^2 = 0$	
When exx = c	2 So whon ic= 4, h= 288
No solution	·
When (k-1) =0	=18
k = 1	(is a minimum)
	Dimensions of container
(c) (i) L = 4 (8x +x +h)	4m x 32m x 18m,
= 36x +4h V	
(ii) (x) V= 8xxxxh	***
=8x h	
$230\varphi = 8x^2h $	· · · · · · · · · · · · · · · · · · ·
$h = \frac{2304}{8x^2}$	the second secon
·	
= 288	
<u>x</u>	· ·
	e en

The first of the second management with the second second