Students Name	12029339
---------------	----------

Teacher Sender	
----------------	--

SYDNEY TECHNICAL HIGH SCHOOL

2002 TRIAL HIGHER SCHOOL CERTIFICATE

MATHEMATICS

Time Allowed - Three Hours (plus 5 minutes reading time)

Direction to Candidates

- ♦ All questions may be attempted
- ♦ All questions are of equal value
- ♦ Approximate marks are shown
- ♦ All working should be shown in every question
- ♦ Full marks may not be awarded for careless or badly arranged work
- ♦ Standard Integrals are printed on the last page of this examination
- ♦ Approved calculators may be used
- Each question attempted is to be started ON A NEW PAGE, clearly marked with the number of the question and your name and class on the top right hand side of the page.
- ♦ This question paper must be handed in with your answers at the conclusion of the examination.

Question	Mark
Question 1	12
Question 2	11
Question 3	9
Question 4	li
Question 5	11
Question 6	9
Question 7	9
Question 8	9
Question 9	11
Question 10	8
TOTAL	100

Question 1 Use a separate writing page.

Factorise $100 - 4x^2$

(2)

(P)

Express 200° as an exact radian value

(1)

X

Find the value of e^5 , correct to 4 significant figures

(2)

(M)

Solve $5 - 2x \le 17$

(2)

(e)

Find $\frac{d}{dx}(x^2-1)$

(1)

X

Find the integers a and b such that $(3 + \sqrt{2})^2 = a + \sqrt{b}$

(2)

X

NOT TO SCALE

In the diagram, AB is an arc of a circle with centre 0. The radius OA is 7cm.

The arc length AB is 9 cm.

Find the size of angle AOB to the

nearest degree.

(2)

Question 2 Use a separate writing page

(a) Find the value/s of x

(3)

(g)

Find, (i)
$$\int \left(\frac{1}{x^2} - \frac{1}{x}\right) dx$$

(4)

$$(ii) \int 2\cos(3x-1)dx$$

(¢

(5)

NOT TO SCALE

The diagram shows the points A(7,2) and B(5,3) and the origin O.

Show that the gradient of AB is $-\frac{1}{2}$.

Find the length of AB.

Find the equation of the line ℓ , passing through the points A and B.

Show that the area of $\triangle AOB$ is $5\frac{1}{2}$ square units.

Question 3 Use a separate writing page

Find the first derivative of

$$y = (x^2 - 1)^3$$

$$f(x) = \frac{2x}{x-1}$$
$$f(x) = \ln(3-x)$$

$$f(x) = \ln(3 - x)$$

Evaluate
$$\int_3^8 \sqrt{x+1} dx$$

(3)

If the quadratic equation $3x^2 - 4x + 7 = 0$ has roots α and β , find

$$\alpha + E$$

$$\alpha^2 + \beta$$

Question 4

Use a separate writing page.

The diagram shows the (3) function y = f(x) between x = 0 and x = 20.

(5)

(4)

Is the area between the function y = f(x), the x axis and the lines x = 0 and x = 20 greater, smaller or equal to $\int_0^{20} f(x)dx$.

Explain fully

Find the equation of the normal to the curve $y = \tan x$ at the point where **(3)**

$$x = \frac{\pi}{4}$$

(6)

In the diagram AB ll PQ,

AQ intersects PB at K and

PK = KQ.

Copy the diagram onto your answer page, marking on it all relevant information.

Prove that $\triangle AKB$ is isosceles

Prove that $\triangle AKP \equiv \triangle BKQ$

Hence, show that AP = BQ

Question 5 Use a separate writing page

(5)

The diagram shows the graph of the functions $y = x^2$ and y = 3 - 2x.

Find the coordinates of A

Find the x - value of the coordinate at B

Find the area of the shaded region contained by the curves,

$$y = 3 - 2x$$
, $y = x^2$ and the x - axis.

Write $0.\overline{73}$ as a geometric series and write down the value of the first term **(3)** and the common ratio.

Hence or otherwise, write 0. 73 in the form of $\frac{x}{y}$ where x and y are integers.

(c) Evaluate $\sum_{t=3}^{100} (3t-5)$ **(2)**

(a) If
$$\int_{0}^{\ln 4} \frac{e^{x}}{e^{x} + 1} dx = \ln A$$
, find the value of A (2)

Question 6 Use a separate writing page.

For what values of K is the quadratic
$$Kx^2 - 6x + (6K + 3) = 0$$
 positive definite (3)

(b) Consider the curve
$$f(x) = x^3 - 12x$$
 (9)

Where does the curve cross the x axis

Find the coordinates of any stationary points and determine their nature

Sketch the curve y = f(x) in the domain $-4 \le x \le 4$.

What is the minimum value of y = f(x) in the domain $-4 \le x \le 4$.

Question 7 Use a separate writing page.

If $\log_2 x = 4.716$ and $\log_2 y = 0.631$ find the value of

$$\log_2 \left(\frac{\sqrt{xy}}{4}\right)$$

For $y = 3\sin 4x$, $0 \le x \le \pi$

(6)

(i) State the (α) Period

 (β) Amplitude.

Sketch the curve $y = 3 \sin 4x$, $0 \le x \le \pi$, clearly showing where the curve cuts the x axis.

(iii) Hence, or otherwise, find the **number** of solutions to $\sin 4x = \cos x$ where $0 \le x \le \pi$

Solve $\sin^2 x - \sin x = 0$ for $0 \le x \le \pi$

(3)

(4)

Question 8 Use a separate writing page.

(a)

The region bounded by the curve $y = e^{-x} + 2$, the coordinates axes and the line x=1, is rotated about the x axis.

)ii)

Sketch the region described above

(ii)

Calculate the exact volume generated.

****(b)

A particle is observed as it moves in a straight line in the period between t = 0 and t = 6. Its velocity V at time t is shown on the graph above.

(i)

What is the velocity of the particle after 2 seconds?

(ii)

What is the particle's acceleration after 2 seconds?

(iji)

At what time/s is the particle at rest?

(ix

At what time does the particle change direction?

(v)

What does the shaded area represent?

(vi)

If the particle starts at the origin, sketch the graph of the displacement x as a function of t.

Evaluate
$$\lim_{x \to 0} \frac{\sin \frac{1}{2}x}{x}$$

(1)

(b) The population of koalas in a park was estimated to be 1000 at the start of 1990. (5) Ten years later the population had fallen to 900. The rate of decrease of the population is proportional to the population at any time t.

show that $P = P_0 e^{kt}$ is a solution to the differential equation.

$$\frac{dP}{dt} = kP$$

After how many years will the population of Koalas in the park be half that of 1990.

(c) A 4 metre piece of wire is cut into 3 pieces, which are bent to form a square and two congruent circles. (6)

(ii) Find the value of r which will make this total area a minimum (give your answer in exact form).

- (a) (i) Sketch the curve $y = \log_{10} x$ and state its domain. (6)
 - (ii) Write an expression for the volume of the solid generated when $y = \log_{10} x$ is rotated about the x axis between x = 2 and x = 4.
 - (iii) Hence, use Simpson's rule, with three function values to find the approximate volume of the solid formed, correct to 3 significant figures.
- (b) Mr Loaner borrows \$P to fund his house extensions. The term of the loan is
 10 years with a monthly reducible rate of 6%p.a.

 Mr Loner repays the loan in equal monthly instalments of \$750.
 - (i) Write an expression for the amount Mr Loaner owes immediately after his first repayment.
 - (ii) Show that at the end of n months the amount owing is given by $A = P(1.005)^n 150000(1.005)^n + 150000.$
 - (iii) If at the end of 10 years the loan has been repaid, calculate the amount that Mr Loaner originally borrowed, correct to the nearest dollar.

Teacher's Name: Stude	nt's Name/N":
Answers Lunit trial 2002.	
Question 1	Question 2
a) 100-4x2	a) 9 = 3x
= 4(25-x²)	4x 16
=4(5-x)(5+x)	12 ズュニ 144
	x ² = 12
b) 200° = 200 II	x = ± 253 but x>0
180 IOT	∴ x = 2√3 mention who only I ans.
<u> Oir</u> 9	
5	$b) i \int x^{-2} - \frac{1}{x} dx$
c) e ⁵ = 148.413	= -x ⁻¹ - \n x + C
= 148.4 (4 sig fig)1	= -/x - mx+c
d) 5-1×617	11. (2 Cos(3x-1) dx
-2x & 12	= = 3 Sin (3x-1)+C
x >> -6	3
	c): Ma = 3-2 = -1
$e^{-1}d_{dx}(x^2-1)=2x$	$c) : M_{AB} = 3-2 = -1$ $5-7$ 2.
	11. $d_{AB} = \sqrt{(1-5)^2 + (2-3)^2}$
$f_{3}(3+\sqrt{2})^{2}=a+\sqrt{b}$	= 5
LHS = 9 + 6JZ + 2	
= 11 +652	11. eq AB: $y - 2 = \frac{1}{2}(x-7)$
= 11 + 572	24 - 4 = -x+7
.: a=11 b=72	x+24-1:1=0
a) (= (0 (0 in rad)	N. $d_1 = 0+2\times 0-11 $ 11 $\sqrt{5}$
9=7 0	0° A = 1 hb
9/7 = €	2
: 081× P = 9 × 180°	= 1 × 11 × 15
7 11	= 11
= 74° neavest degree	2
$\underbrace{\text{of } Q = \frac{\Theta}{2400} \times 2 \times \Pi \times 7}_{\text{max}}$	= 51/2 units2
θ = 74°	

1 eacher's Name: Student's Name/N":	
Question 3	
a. 1. $y = (x^2 - 1)^3$	
$y' = 6x(x^2-1)^2$	
J	
11. $f(x) = 2x$	
 1 − 1	
f'(x) = (x-1).2 - 2x.	
$(x-1)^2$	************
= -2	***************
$(x-1)^2$	*****
$ni. \ f(x) = \ln(3-x)$	
f'(x) = -1	
3-x	······································
20 11	
b. $\int_{\frac{\pi}{2}}^{8} (x+1)^{1/2} dx$	
3/ 3/2 3	,
$\frac{2}{3}(x+1)^{3/2}$	***************************************
2 [03/2 03/2]	
$=\frac{2}{3}\left[9^{3/2}-4^{3/2}\right]$	
* = [27 -8]	
$= 12^{2/3}$ $(38/3)$	
c) $3x^2 - 4x + 7 = 0$	
1. d*β= c/a 11. d+β=-b/a	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
$ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	***************************************
= (4)2 - 2 - 7	******************************
$= \left(\frac{4}{3}\right)^2 - \lambda \times \frac{1}{3}$	
= -2 8/9	

2	

eacher's Name: Question 4	Student's Name/N°:	
	12 12 125 15/ 1/ 12	
~ ^	= 12 ¹ / ₂ +35 + ¹⁵ / ₂ + (-10)	******************
	= 45	***************************************
	M to a second and a	
the x axis	ald be more as the section under	
هن میرامه	becomes the with area increasing the $A16a = 12\frac{1}{2} + 35 + \frac{15}{2} + \frac{1}{10}$	
tuus je	A/60 = 12/2 +35+ -72 + 1-101	
by y= tanx	y= tan ™4	
$y^1 = Sec^2x$	= 1	************************
= 1		***************************************
Cos ² ,x		
cos ² ,x	t) ²	***************************************
= 1/(1/52		
= 2	: M _N = -2	
∴ y-1=-	1 (x-11/4)	
2y -2 =	~z + ¹¹ /4	
x + 2y -	- 2 - T/4 = 0	
	osceles PK = KQ	
: LKPQ = LK	(ap (angles opp equal sides)	
Z KPQ = ZA	1BK (alt L's ABIIPa)	
and LKQP = L	KAB (alt L's ABIIPQ)	
·: L KAB = L		
	(sides opp equal L's)	
DAKB is	isosceles .	************
II. IN DAKP	and ΔBKQ	
_	B (part(1))	
	a (given)	
	LBKO (vert opp L's) -	
DAKP	= ΔBKQ (SAS)	*******************
m. AP = 80		
VI = DØ	corresp. sides of congruent triangles.	

Teacher's Name: Student'	s Name/N°:	
Question 5		
	$\int_{0}^{\ln 4} \frac{e^{x}}{1 + e^{x}} dx = \ln A$	
a.1. $x^2 = 3 - 2x$	LHS = \(\lambda (1 + e^{\times} \right) \right] \(\lambda \)	
$x^2 + 2x - 3 = 0$	= ln(1+18/104) - ln(1+1)	
(x+3)(x-1)=0		
x = -3 x = 1	= In5 _ In2	
$a \nmid A = 1 y = 1.$	$= ln\left(\frac{5}{2}\right)$	
3 :-	: A = 5/2	
11. at B $x = 3/2$		
-		
111. $A = \int_{0}^{1} x^{2} dx + \frac{1}{2}hb$	\rightarrow or $\int_{-1.5}^{1.5} 3 - 2x dx$	
$=\frac{x^3}{3}\bigg _0^1+\frac{1}{2}x x$	2	
$=\frac{1}{3}-0+\frac{1}{4}$		
= 1		
= 1/3 + 1/4		
- 7/ 2		
$= \frac{7}{12} u^2$		
h Vo 4: 73 . 73 . 73		
$b. \frac{1}{10000} + \frac{73}{10000} + \frac{73}{10000} + \frac{73}{1000}$	œc ⁺ · · · ·	
∴ a = 0.73		
r = 0.01		
1) $S_{\infty} = \frac{\alpha}{1-c}$	•	
= 0.73/0.99		
= ¹³ /99		
c) $\sum_{t=3}^{3} (3t-5) = 4+7+10$		
a=4 $d=3$ $n=100-3+1$		
$\int_{0}^{\infty} S_{n} = \frac{n}{2} \left(a + \epsilon \right)$	= 98	
$=\frac{98}{2}(4+295)$		
= 14651		

Teacher's Name: Student's Nam	ne/N°:
Question 9.	
	$A = \pi(^2 + \pi(^2 + x^2))$
a) $\lim_{x\to 0} \frac{\sin \frac{1}{2}x}{x} = 1$	
1 →0 1 2 2	$= 2\pi(^2 + (1-\pi)^2)$
b) 1. P= Poekt	11. dA = 411(+2(1-111)x-11
ap = k. Poekt	ar
ap = k. Poekt at	0 = 4111 - 211 (1-11)
= k.P	(÷an
: P= Poekt is a sol ⁿ to.	$0 = 2\Gamma - (1 - \pi \ell)$
-	0 = 20 - 1 + 110
11. P= 1000 e ^{Kt}	$1 = r(2+\pi)$
900 = 1000 e k × 10	C = [(C=0.19)
q = e lok	2+T
lo	Nature
In 9/10 = In e lok	$\frac{d^2A = 4\pi + 2\pi^2}{}$
10K = 10 %10	dr ²
$K = \frac{1}{10} \ln \frac{9}{10} (\div -0.0105)$.: min when
10 10	C = 1
500 = 1000 ekt	2+T.
1 = ekt	`
lno.5 = lnek€	
Kt = 100.5	c
£= 100.5 ÷k	
= 65.788	
: 66 years.	
0	
<u>t</u> t (2) (3)	
1. ×	
$4x + 2 \times 2\pi i = 4 $ (÷4)	
DL + T(= 1	•

ユニ (- 丁「

	Teacher's Name: Student's Name/N":	
	Question 10	_
·	Λ ³	A = P(1-005) n - 750 (d(n-1))
•	a. 1.	(-1)
	, x	= P(1.005) - 750[1(1.005 n-1)
		0.005
	11	
	Domain x > 0	= P(1.005)^-150 000(1.005^-1
	11. $V_{x} = II \int y^{2} dx$	= P(1.005)n-150000(1.005)n
	- " - " J - 4 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	
	$= \pi \int_{\gamma}^{\gamma} (\log_{10} x)^2 dx$	+ 150000.
	3, ()10	120
	uı.	111) P= 150 000 (1.005) - 150 000
	x 2 3 4 h=1	1.005 120
	(logiox)2 0.0906 0.2276 0.3625	
		= 67555.09
	$V = \overline{N} \times \underline{h} (f + L + 4 \times M)$	
	3 '	= \$67555.
	$= \pi \times 1 / 0.0906 + 0.3625 + 4 \times 0.23$	276)
	3(
	= TT (1-3635)	
	= 1·43 (3 sig fig)	
	b. 1. P(1.005) -750	
	8. 1. P(1.008) - 150	
	11. $A_1 = P(1.005) - 750$	
	A = P(1.005)2-750(1.005)-750	
	$A_{3} = P(1.005)^{2} - 750(1.005) - 750$ $A_{3} = P(1.005)^{3} - 750(1.005)^{2} - 750(1.005)$	-7so
•	1	
	:. An= P(1.005) n-750 (1.005) n-750 (1.005) n-2	
	750	
	$A = P(1.005)^{n} - 750[1.005^{n-1} + 1.005^{n-2} + + 1]$	
·		