

2010
PRELIMINARY
EXAMINATION PAPER

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board approved calculators may be used
- All necessary working should be shown in every question

Total Marks - 84

- Attempt Questions 1–7
- All questions are of equal value

THIS PAPER CANNOT BE RELEASED IN PUBLIC UNTIL AFTER 22nd SEPTEMBER 2010
This paper is used with the understanding that it has a Security Period.

Preliminary Mathematics Extension 1 2010

Total Marks – 84 Attempt Questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet.

Question 1 (12 marks) Use a SEPARATE writing booklet.

- (a) Teams of 5 players are chosen from 9 basketball players which include A and B.
 - (i) How many different teams can be formed with no restrictions?
 - (ii) If A and B do not play in the same team, how many teams can be formed?
- (b) The polynomial $P(x) = x^3 4x^2 + kx + 2$ is divisible by x + 2. 2 Find the value of the constant k.
- (c) Fully factorise $x^6 y^6$.
- (d) (i) Factorise $(x+h)^3 x^3$.
 - (ii) Hence find $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ where $f(x)=x^3$.
- (e) Solve the inequality $\frac{x}{x-1} \ge 2$.

Question 2 (12 marks) Use a SEPARATE writing booklet.

(a)

In the diagram, AB is a daimeter of the circle with centre O. H and K are points on the circle with OH//BK and $\angle OBK = 40^{\circ}$.

Copy or trace this diagram into your writing booklet.

(i) Find $\angle OHA$, giving reasons.

1

(ii) Find $\angle OHK$, giving reasons.

2

(b) Solve $\sin 2\theta = \cos \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.

3

2

2

- (c) A and B are the points (-1,2) and (5,8) respectively.
 - (i) Find the coordinates of the point *P* which divides *AB* **externally** in the ratio 2: 3.
 - (ii) Q(1,4) is a point on AB. Find the ratio in which Q divides AB.
- (d) Find the acute angle between the lines

2

$$v = 3x - 6$$
 and $v = -2x + 1$.

Question 3 (12 marks) Use a SEPARATE writing booklet.

(a) Find the exact value of cos 75°.

2

(b) If α is acute and β is obtuse with $\cos \alpha = \frac{4}{5}$ and $\sin \beta = \frac{12}{13}$, find the exact value of $\sin(\alpha + \beta)$.

3

(c) Eight people, including a couple, sit at a round table. Find the number of ways this can be done,

) if there are no restrictions;

1

ii) if the couple must not sit together.

2

(d) Consider the function $f(x) = 4 \cos x - 3 \sin x$.

(i) Express f(x) in the form $R \cos(x + \alpha)$ where α is an acute angle.

3

(ii) Hence find the maximum value of $4\cos x - 3\sin x + 2$.

1

1

3

1

Question 4 (12 marks) Use a SEPARATE writing booklet.

(a) When $P(x) = 2x^3 + ax^2 + bx - 3$ is divided by (x + 1) and (x - 2), the remainders are 2 and 17 respectively.

Find the values of the constants a and b.

- (b) (i) Write down the domain of the function $y = \sqrt{4 x^2}$.
 - (ii) Draw the graph of $y = \sqrt{4 x^2}$.

Hence shade, in the same diagram, the region satisfying

$$y \le \sqrt{4 - x^2}.$$

(c) (i) Let $t = \tan \frac{\theta}{2}$.

Using double-angle formulae, prove that

$$\sin \theta = \frac{2t}{1+t^2} \text{ and } \cos \theta = \frac{1-t^2}{1+t^2} .$$

(ii) Use the substitution $t = \tan \frac{\theta}{2}$ to solve the equation

 $\sin \theta + 2\cos \theta + 2 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.

Question 5 (12 marks) Use a SEPARATE writing booklet.

(a)

In the diagram, O is the centre of the circle. TP is a tangent touching the circle at P. A is a point on the circle such that $\angle AOT$ is a right angle. AP cuts OT at Q.

Copy or trace this diagram into your writing booklet.

Show that
$$TP = TQ$$
.

- (b) How many triangles can be formed with 12 straight lines in a plane,
 - i) if no 2 lines are parallel and no 3 lines are concurrent?
 - (ii) if 2 lines are parallel and 4 other lines are concurrent?
- (c) α, β and γ are the roots of the equation $2x^3 + 4x^2 + 3x 5 = 0$.
 - (i) Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$.
 - (ii) Find the value of $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$.
 - (iii) Hence find the cubic equation with roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

Question 6 (12 marks) Use a SEPARATE writing booklet.

(a)

In the diagram, the chords AB and DC are produced to meet at P, and the chords AD and BC are produced to meet at Q. $\angle APD = \angle AQB$.

Copy or trace this diagram into your writing booklet.

(i) Explain why *BPQD* is a cyclic quadrilateral.

1

(ii) Show that AC is a diameter.

3

(b) (i) Draw the graph of y = |x - 1|.

1

(ii) Hence, or otherwise, solve the inequality

2

|x - 1| > x.

Question 6 continues on page 8

Question 6 (continued)

(c)

In the diagram, P and Q are 50m apart in a horizontal plane. AB is a vertical tower standing on the plane. The angles of elevation of the top of the tower A from P and Q are 35° and 28° respectively. The bearings of the tower from P and Q are 058° and 337° respectively.

Let the height of the tower be h metres.

Show that $BP = h \tan 55^{\circ}$.

(ii) Use a diagram to show that $\angle PBQ = 81^{\circ}$.

(iii) Find the value of h.

3

1

1

End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.

- (a) (i) Show that $x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 2$.
 - (ii) Hence solve $x^2 + \frac{1}{x^2} x \frac{1}{x} 4 = 0$.
- (b) P and Q are two variable points on the parabola $x^2=4ay$ with parameters p and q respectively.
 - (i) Show that the equation of the tangent to the parabola at the point P is $y = px ap^2.$
 - (ii) Write down the equation of the tangent to the parabola at the point Q.
 - (iii) The tangents to the parabola at P and Q meet at T. Show that the coordinates of T are (a(p+q), apq).
 - (iv) If PQ always passes through the point (-a, 0), find the equation of the locus of T.

END OF PAPER

BLANK PAGE

2010 Preliminary Yearly Examination – Mathematics Extension 1 **Suggested Solutions**

Question 1 (12 marks)

(a) (i) (1 mark)

Outcomes Assessed: PE3

Criteria	Mark
Gives the correct answer.	1

Sample Answer

 $C_5^9 = 126$

(a) (ii) (2 marks)

Outcomes Assessed: PE3

		Criteria	Mark
ļ	•	Correctly works out the number of teams which include A and B.	1
ļ	•	Gives the correct answer.	1

Sample answer

A and B play together: $C_3^7 = 35$

Answer=126-35=91

(b) (2 marks)

Outcomes Assessed: PE3

	Criteria	Mark
•	Correctly applies the Factor Theorem.	1
•	Gives the correct answer.	1

Sample Answer

$$P(-2) = 0$$

 $-8 - 16 - 2k + 2 = 0$
 $k = -11$

(c) (2 marks)

Outcomes Assessed: P3

	Criteria	Mark
•	Applies the formula for the difference of 2 squares or 2 cubes.	1
•	Gives the correct answer.	1

Sample Answer

$$x^{6} - y^{6}$$

$$= (x^{3} + y^{3})(x^{3} - y^{3})$$

$$= (x + y)(x^{2} - xy + y^{2})(x - y)(x^{2} + xy + y^{2})$$

(d) (i) (1 mark)

Outcomes Assessed: P8

	Criteria	Mark	
•	Gives the correct answer.	1	

Sample answer

$$(x+h)^3 - x^3$$
= $(x+h-x)[(x+h)^2 + (x+h)x + x^2]$
= $h(3x^2 + 3hx + h^2)$

(d) (ii) (1 mark)

Outcomes Assessed: P8

Criteria	Mark	
Gives the correct answer.	1	

Sample Answer

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3hx + h^2)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3hx + h^2)$$

$$=3x^2$$

(e) (3 marks)

Outcomes Assessed: PE3

	Criteria	Mark
•	Gives a correct method to get rid of the denominator.	1
•	Gives the correct solution for the quadratic inequality.	1
•	Gives the correct answer by excluding $x = 1$.	1

Sample Answer

Multiplying both sides by
$$(x-1)^2$$
, $x(x-1) \ge 2(x-1)^2$

$$(x-1)[x-2(x-1)] \ge 0$$

(x-1)(-x+2) \ge 0

$$1 \le x \le 2$$

$$1 \le x \le 2$$

$$x \ne 1, \therefore 1 < x \le 2$$

$$1$$

Question 2 (12 marks)

(a) (i) (1 mark)

Outcomes Assessed: PE3

Criteria	Mark
 Gives the correct answer.	1

Sample Answer

$$\angle AOH = 40^{\circ}$$
 (corresponding angles, $OH//BK$)

 $OA = OH$ (radii)

 $\angle OAH = \angle OHA$ (base angles of isosceles triangle)

 $\angle OAH + \angle OHA + 40^{\circ} = 180^{\circ}$ (angle sum of triangle)

 $\angle OHA = 70^{\circ}$

(a) (ii) (2 marks)

Outcomes Assessed: PE3

	Criteria	Mark
	Correctly works out $\angle AHK$ with the property stated.	1
•	Gives the correct answer.	1

Sample answer

$$\angle AHK = 180^\circ - 40^\circ$$
 (opposite angles of cyclic quadrilateral) 1 = 140° \\
 $\angle OHA = 70^\circ$ \\
 $\angle OHK + 70^\circ = 140^\circ$ \\
 $\angle OHK = 70^\circ$ 1

(b) (3 marks)

Outcomes Assessed: P4

	Criteria	Mark
Ð	Correctly applies the double-angle formula.	1
	Gives the correct answers for $\cos \theta = 0$.	1
	Gives the correct answers for $\sin \theta = 0.5$,	1

Sample Answer

$$2\sin\theta\cos\theta = \cos\theta$$

$$\cos\theta(2\sin\theta - 1) = 0$$

$$\cos\theta = 0 \text{ or } \sin\theta = \frac{1}{2}$$

$$\theta = 90^{\circ}, 270^{\circ} \text{ or } 30^{\circ}, 150^{\circ}$$
1+1

(c) (i) (2 marks)

Outcomes Assessed: P4

	Criteria	Mark
9	Applies the division formula.	1
е	Gives the correct answer.	1

Sample Answer

$$P = \left(\frac{-2 \times 5 + 3 \times -1}{-2 + 3}, \frac{-2 \times 8 + 3 \times 2}{-2 + 3}\right)$$

$$P = (-13, -10)$$

(c) (ii) (2 marks)

Outcomes Assessed: P4

 Criteria	Mark
Applies the correct method.	1
Gives the correct answer.	1

Sample answer

Let the ratio be 1:r.

$$Q = \left(\frac{1 \times 5 + r \times -1}{1 + r}, \frac{1 \times 8 + r \times 2}{1 + r}\right) = (1,4)$$

5-r	
$\frac{1}{1+r} = 1$	1
5 - r = 1 + r	
r = 2	1
The ratio is 1:2.	

(d) (2 marks)

Outcomes Assessed: P4

Criteria	Mark
Applies the $tan(A - B)$ formula.	1
Gives the correct answer.	1

Sample Answer

Let the acute angle be θ .

$$\tan \theta = \left| \frac{3 - 2}{1 + 3(-2)} \right|$$

$$\tan \theta = 1$$

$$\theta = 45^{\circ}$$
1

Question 3 (12 marks)

(a) (2 marks)

Outcomes Assessed: P4

Criteria	Mark
• Correctly expands $cos(A + B)$.	1
Gives the correct answer.	1

Sample Answer

$$\cos 75^{\circ} = \cos(30^{\circ} + 45^{\circ}) = \cos 30^{\circ} \cos 45^{\circ} - \sin 30^{\circ} \sin 45^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \frac{\sqrt{2}(\sqrt{3} - 1)}{4}$$

(b) (3 marks)

Outcomes Assessed: P4

	Criteria	Mark
	Correctly works out either $\sin \alpha$ or $\cos \beta$.	1
•	Correctly expands $sin(\alpha + \beta)$ and substitutes values of trigonometric	1
	ratios.	
•	Gives the correct answer.	1

Sample answer

$$\sin\alpha = \frac{3}{5}$$

$$\cos \beta = \frac{-5}{13}$$

$$s \beta = \frac{-5}{13}$$

$$\sin(\alpha + \beta)$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$= \frac{3}{5} \times \frac{-5}{13} + \frac{4}{5} \times \frac{12}{13}$$

$$= \frac{33}{65}$$

(c) (i) (1 mark)

Outcomes Assessed: PE3

Criteria	Mark
Gives the correct answer.	1

Sample Answer

7! or 5040

(c) (ii) (2 marks)

Outcomes Assessed: PE3

	 Criteria	Mark
İ	Gives the number of ways of sitting together.	1
L	Gives the correct answer.	1

Sample Answer

Number of ways of seating if the couple sit together = $6! \times 2$ or 1440 Answer= $7! - 6! \times 2 = 3600$

(d) (i) (3 marks)

Outcomes Assessed: P4

L		Criteria	Mark
	•	Applies the correct method.	1
		Gives the correct answer for R and α .	1+1

Sample answer

 $4\cos x - 3\sin x = R\cos x\cos\alpha - R\sin x\sin\alpha$

 $R\cos\alpha = 4$ and $R\sin\alpha = 3$ Solving, R = 5, $\alpha = 36^{\circ}52'$

1 1+1

 $f(x) = 5\cos(x + 36^{\circ}52')$

(d) (ii) (1 mark)

Outcomes Assessed: P4

	Criteria	Mark	
0	Gives the correct answer.	1	

Sample Answer

 $4\cos x - 3\sin x + 2 = 5\cos(x + 36^{\circ}52') + 2$

The maximum value of $5\cos(x + 36^{\circ}52')$ is 5.

The maximum value of $4\cos x - 3\sin x + 2$ is 7.

1

1

Question 4 (12 marks)

(a) (3 marks)

Outcomes Assessed: PE3

	Criteria Criteria	Mark
9	Correctly applies the Remainder Theorem once.	1
	Solves the simultaneous equation.	1
9	Gives the correct answer.	1

Sample Answer

$$P(-1) = -2 + a - b - 3 = 2$$

 $P(2) = 16 + 4a + 2b - 3 = 17$

$$a - b = 7$$

 $4a + 2b = 4$
Solving, $a = 3, b = -4$

(b) (i) (1 mark)

Outcomes Assessed: P5

1	Criteria '	Mark
	Gives the correct answer.	1

Sample answer

$$4 - x^2 \ge 0 \\
-2 \le x \le 2$$

(b) (ii) (3 marks)

Outcomes Assessed: P5

	Criteria	Mark
•	Gives the correct graph.	1
	Shades the interior of the semi-circle.	1
	Shades the correct region below the x-axis.	1

Sample Answer

(c) (i) (2 marks)

Outcomes Assessed: P4

	Criteria	Mark
6	Gives the proof for $\sin \theta$.	1
	Gives the proof for $\cos \theta$.	1

Sample Answer

$$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \times \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \times \cos^2 \theta = 2 \tan \frac{\theta}{2} \times \frac{1}{\sec^2 \frac{\theta}{2}} = \frac{2t}{1+t^2}$$

$$\cos\theta = 2\cos^2\frac{\theta}{2} - 1 = \frac{2}{\sec^2\frac{\theta}{2}} - 1 = \frac{2}{1+t^2} - 1 = \frac{1-t^2}{1+t^2}$$

(c) (ii) (3 marks)

Outcomes Assessed: P4

Criteria	Mark
Substitutes the results in (i) and simplifies the equation.	1
Gives the first correct answer.	1 1
Gives the other answer.	1 1

Sample answer

$$\frac{2t}{1+t^2} + 2\left(\frac{1-t^2}{1+t^2}\right) + 2 = 0$$

$$2t + 2 - 2t^{2} + 2 + 2t^{2} = 0$$

$$2t + 4 = 0$$

$$t = -2$$

$$\theta = 233^{\circ}8'$$

Substitutes
$$\theta = 180^{\circ}$$
,

LHS=
$$\sin 180^{\circ} + 2 \cos 180^{\circ} + 2 = 0$$
=RHS $\theta = 180^{\circ}$ is a solution.

1

Question 5 (12 marks)

(a) (3 marks)

Outcomes Assessed: PE3

	Criteria	Mark
	Correctly finds $\angle OPT$ with reason given.	1
	Correctly expresses $\angle TQP$ in terms of $\angle OAQ$.	1
•	Completes the proof.	1

Sample Answer

$$\angle OPT = 90^{\circ}$$
 (Radius perpendicular to tangent.)
 $\angle TPQ = 90^{\circ} - \angle OPQ$

$$\angle TQP = \angle AQO$$
 (vertically opposite angles)
= $180^{\circ} - 90^{\circ} - \angle OAQ$ (angle sum of triangle)
= $90^{\circ} - \angle OAQ$

$$\angle OAQ = \angle OPQ$$
 (base angles of isosceles triangle)

$$\therefore \angle TPQ = \angle TQP$$

$$TP = TQ$$
 (sides opposite equal angles in a triangle are equal.)

(b) (i) (1 mark)

Outcomes Assessed: PE3

Criteria	Mark
Gives the correct answer.	1

Sample answer

$$C_3^{12} = 220$$

(b) (ii) (3 marks)

Outcomes Assessed: PE3

	Criteria	Mark
•	Gives the number of triangles formed with 2 chosen lines and a third	1
	line from the remaining 10 lines	
•	Gives the number of triangles formed with 4 lines.	1
•	Gives the correct answer.	1

Sample Answer

2 lines are parallel:

If 2 of the lines are NOT parallel, then (12-2) = 10 triangles can be formed with these 2 lines and a line from the remaining 10 lines.

4 lines are concurrent;

If 4 of the lines are not concurrent, then they can form $C_3^4 (= 4)$ triangles.

Answer= 220 - 10 - 4 = 206

(c) (i) (2 marks)

Outcomes Assessed: PE3

Criteria	Mark
Gives the value of either $\beta \gamma + \gamma \alpha + \alpha \beta$ or $\alpha \beta \gamma$.	1
Gives the correct answer.	1

Sample Answer

$$=\frac{\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}}{\frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma}}$$

$=\frac{3}{2}\div\frac{5}{2}$			1
$=\frac{3}{5}$			1

(c) (ii) (1 mark)

Outcomes Assessed: PE3

	Criteria	Mark
 Gives the correct answer. 		1

Sample answer

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$$

$$\frac{\alpha + \beta + \gamma}{\alpha\beta\gamma}$$

$$-2 \div \frac{5}{2} = -\frac{4}{5}$$

(c) (iii) (2 marks)

Outcomes Assessed: PE3

	Criteria	Mark
9	Gives the correct value of $\frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma}$.	1
e	Gives the correct answer.	1

Sample answer

$$\frac{1}{\alpha} \times \frac{1}{\beta} \times \frac{1}{\gamma} = 1 \div \frac{5}{2} = \frac{2}{5}$$

The required equation is

$$x^{3} - \frac{3}{5}x^{2} - \frac{4}{5}x - \frac{2}{5} = 0$$

$$5x^{3} - 3x^{2} - 4x - 2 = 0$$

Question 6 (12 marks)

(a) (i) (1 mark)

Outcomes Assessed: PE3

	Criteria	Mark
6	Gives the correct reason.	1

Sample Answer

BD subtends equal angles at P and Q.

.

(a) (ii) (3 marks)

Outcomes Assessed: PE3

	Criteria	Mark
•	Show that $\angle CDQ = \angle PBC$ with reason given.	1
•	Show that $\angle CDQ = \angle ABC$ with reason given.	1
6	Completes the proof.	1

Sample answer

BPQD is a cyclic quadrilateral.

$\angle CDQ = \angle PBC$	(angles in the same segment.)	1
$\angle CDQ = \angle ABC$	(exterior angle of a cyclic quadrilateral)	1
$\angle PBC = \angle ABC$		
$\angle PBC + \angle ABC = 180^{\circ}$	(adjacent angles on a straight line)	
. 4 D C 000		

 $\therefore \angle ABC = 90^{\circ}$

AC is a diameter

(b) (i) (1 mark)

Outcomes Assessed: P5

Officonics research 10		
Criteria	Mark	
Draws the correct graph.	1	

Sample Answer

(b) (ii) (2 marks)

Outcomes Assessed: PE3

	Criteria	Mark
•	Draws the graph of $y = x$ in the same diagram.	1
6	Gives the correct answer.	1

Sample Answer

1		
Solution: $x < \frac{1}{2}$		
Solution v < -		
Jointion's ~ 2		
4		

(c) (i) (1 mark)

Outcomes Assessed: P4

Criteria	Mark
Completes the proof.	1

Sample answer

$$\angle APB = 35^{\circ}$$

 $\angle PAB = 55^{\circ}$

$$\tan 55^{\circ} = \frac{BP}{h}$$

h $BP = h \tan 55^{\circ}$

(c) (ii) (1 mark)

Outcomes Assessed: P4

Criteria	Mark
Draws a diagram to complete the proof.	1

Sample answer

$$360^{\circ} - 337^{\circ} = 23^{\circ}$$

$$\angle PBQ = 58^{\circ} + 23^{\circ} = 81^{\circ}$$

1

(c) (iii) (3 marks)

Outcomes Assessed: P4

	Criteria	Mark
	Applies the Cosine Rule to $\triangle PBQ$.	1
	Makes h^2 the subject.	1
•	Gives the correct answer.	1

Sample answer

Using the Cosine Rule,

$$50^2 = (h \tan 55^\circ)^2 + (h \tan 62^\circ)^2 - 2(h \tan 55^\circ)(h \tan 62^\circ) \cos 81^\circ$$

$$h^2 = \frac{50^2}{(\tan 55^\circ)^2 + (\tan 62^\circ)^2 - 2(\tan 55^\circ)(\tan 62^\circ)\cos 81^\circ}$$

$$h \approx 22.97(\text{m})$$

Question 7 (12 marks)

(a) (i) (1 mark)

Outcomes Assessed: P4

	Criteria	Mark
•	Gives the correct working.	1

Sample Answer

$$\left(x + \frac{1}{x}\right)^2 - 2 = x^2 + 2 + \frac{1}{x^2} - 2 = x^2 + \frac{1}{x^2}$$

(a) (ii) (3 marks)

Outcomes Assessed: P4

Criteria	Mark
Transforms the given equation into a quadratic equation.	1
 Gives the first set of answers. 	1
 Gives the second set of answers. 	1

Sample answer

$$x^{2} + \frac{1}{x^{2}} - x - \frac{1}{x} - 4 = 0$$

$$\left(x + \frac{1}{x}\right)^{2} - 2 - x - \frac{1}{x} - 4 = 0$$
Let $m = x + \frac{1}{x}$.
$$m^{2} - m - 6 = 0$$

$$m = -2 \text{ or } 3$$

$$x + \frac{1}{x} = -2 \text{ or } x + \frac{1}{x} = 3$$

$$x^{2} + 2x + 1 = 0$$
 $x^{2} - 3x + 1 = 0$ $x = -1$ $x = \frac{3 \pm \sqrt{5}}{2}$ 1+1

(b) (i) (2 marks)

Outcomes Assessed: PE4

Criteria	Mark
Shows that the gradient is p.	1
Completes the proof.	1

Sample Answer

$$y = \frac{x^2}{4a}$$

$$\frac{dy}{dx} = \frac{2x}{4a}$$
At $P, m = p$

The equation of the tangent at P is

$$y - ap^{2} = p(x - 2ap)$$

$$y = px - ap^{2}$$

(b) (ii) (1 mark)

Outcomes Assessed: PE4

Criteria	Mark
Gives the correct answer.	1

Sample Answer

$$y = qx - aq^2$$

(b) (iii) (2 marks)

Outcomes Assessed: PE3

Criteria	Mark
Eliminates y to obtain an equation in x only.	1
Completes the proof.	1

Sample answer

Solving simultaneously,

$$px - ap^2 = qx - aq^2$$

$$px - ap^2 = qx - aq^2$$

$$(p-q)x = a(p^2 - q^2)$$

$$x = a(p+q)$$

$$y = p[a(p+q)] - ap^2$$

$$x = a(p+q)$$

$$y = p[a(p+q)] - ap^2$$

$$y = apq$$

(b) (iv) (3 marks)

Outcomes Assessed: PE3

Criteria	Mark
Equates the gradients of AP and AQ where $A = (-a, 0)$.	1
Correctly finds the relation between p and q .	1
Gives the correct answer.	1

Sample answer

$$PQ$$
 passes $(-a, 0)$.

$$=\frac{aq^2-0}{aq^2-1}$$

$$\frac{PQ \text{ passes } (-a,0).}{\frac{ap^2 - 0}{2ap + a}} = \frac{aq^2 - 0}{2aq + a}$$

$$\frac{p^2}{2p+1} = \frac{q^2}{2q+1}$$

$$2p^2q + p^2 = 2pq^2 + q^2$$

$$2p^{2}q + p^{2} = 2pq^{2} + q^{2}$$

 $p^{2} - q^{2} = 2pq(q - p)$
 $p \neq q, \therefore -2pq = p + q$

$$p \neq q, : -2pq = p + q$$

For
$$T, x = a(p+q), \quad y = apq$$

The locus of T is
$$-2y = x$$
 or $y = -\frac{1}{2}x$.

END OF PAPER