Worksheet 11-03 Composite areas

Worksheet 11-04

Odd areas

1 Find the area of each shape.

a _____

b _____

c _____

d _____

e _____

2 This is a rectangle. The midpoints of each side are joined to form a rhombus. Find the area of the rhombus.

3 The area of a square is 35 m². Find the length of one of its sides, correct to one decimal place.

4 A piece of string is 1 metre long. Divide it into two pieces to form two different shapes with the same area. Try to find more than one solution.

5 A rectangle has an area of 48 cm². If the lengths of the sides of the rectangle are whole centimetres, what are the possible dimensions of this rectangle? Which of these possibilities gives the rectangle with the smallest perimeter?

Think

Is it possible to draw each regular polygon (equilateral triangle, square, regular pentagon, etc.) so that they all have the same area (or very close)?

ANSWERS TO COMPOSITE AREAS – WORKSHEET 11-03

\mathbf{a} 30 cm ²	b 36 cm ²	c 30 cm ²	d 78 cm ²	e 30 cm ²	f 13 cm ²
g 40 cm ²	h 36 cm ²	27.5 cm ²	j 28 cm ²	k 84 cm ²	1 50 cm ²
$m = 29.5 \text{ cm}^2$	n 1600 cm ²	0 34 m ²	p 2575 mm ²	q 19.85 m ²	2.615×10 ⁶ mm ²

15/08/12